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I
BRIEF HISTORY

A little over five hundred years ago, Vasco da Gama, having rounded the cape, was creeping
along the African coast, full of imaginary fears about the motives behind traditional African
hospitality. Equally, he was afraid to strike out across the “uncharted” deep sea. Ultimately
he accepted the advice to do just that if he wanted to proceed towards the land of spices. But
he needed a pilot to bring him from Africa to India so that he could “discover” India. There
is a controversy whether the pilot who brought Vasco da Gama from Melinde to Kozikhode
(Calicut) was an Arab (the legendary Ibn Mājid) or a “Guzerati Moor”, Malemo Cana, as
earlier accounts called him.1 (Vasco da Gama himself did not mention any nationality, for
the obvious reason that he was unaware of Gujarat, and simply thought of all Muslims as
Moors.) Tibbets2 believes the latter is likely since Indians lack any sense of national iden-
tity. While agreeing with Tibbets’ conclusion, and without needing to deny his irrelevant
observation (which applies equally to Europeans), the connection between observation and
conclusion is nevertheless far fetched, for the Arabs then tended to regard the Portuguese
as barbarians. As is amply clear from the organized arrangements for traders that Vasco da
Gama encountered in Calicut, sea trade between India, Arabs, Africa, and China was at that
time carried out in a peaceful and honourable way.

In any case, everyone agrees that the pilot3 (Muāl̄ım, or Mālm̄ı, or “Malemo”) of that
fateful voyage used the kamāl, a copy of which the mystified Vasco da Gama carried back
with him. Vasco da Gama thought the pilot told the distance with his teeth! How did the
pilot manage to do that?

Kamāl means complete, so kamāl denotes a complete instrument. Rā means night as
in rātri, while palagai (usually spelt palaka) means a block of wood or instrument, so that
rāpalagai means a night instrument.

It is now generally agreed that, during Vasco da Gama’s time, the boat-building and
navigational techniques existing in the Arabian Sea and the Indian Ocean were superior to
those possessed by the Europeans. The Arabs then ridiculed the European method of using
charts.4 But things changed. According to Tibbets, by the mid-nineteenth century, pilots in
the Arabian sea had abandoned the kamāl for the sextant. However, the navigational needs
of the Lakshadweep islanders (excluding Minicoy) were limited to travel to the mainland and
back. They travelled for barter, and not for commerce or adventure. So the Lakshadweep
islanders continued using the kamāl, and shifted to the kamān (sextant) later.

In 1923, R. H. Ellis, a British officer, inspected the islands. He recommended5 that
schools should teach a course on modern navigation. The recommendation was intended
to make the British government and its institutions more popular with the islanders. Even-
tually, a textbook called Nāvik Shāstram written in Malayalam, was published in 1939, and
teaching of modern navigational techniques commenced at Amini. Today, no Amini islander
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recollects seeing the rāpalagai in use. I spoke to two of the oldest Amini-based navigators,
Syed Bukhari (b. 1929), and Ahmed Pallechetta (also around 70 years at that time), who too
learnt from Syed Bukhari’s father; both used Nāvik Shāstram and “Noorie tables”.

As regards the Arabic-sounding “Noorie”, it should be clarified that the reference is to
Norie’s Nautical Tables, a book first published by Capt. James Norie, in 1803, which has
remained in print continuously since then, though it has undergone numerous revisions.
The enormous success of the book presumably enabled Capt. Norie to acquire a stake in
a publishing company, which now publishes the tables. The Norie tables in the present
Rehmani of Kunhi Kunhi Maestry of Kavaratti refer to the declination tables for the sun from
the 1864 edition of Norie’s Tables, which he consulted from the Kavaratti library. However,
the idea of using solar altitude and declination to determine latitude is detailed in numerous
Indian and Arabic astronomy books from the 5th century CE onwards. So this idea was
already very much a part of the navigational traditions prevalent in the Indian ocean—but
the sources have changed.

Contrary to what one might expect, a priori, the navigational traditions vary substantially
between the islands: a knowledgeable navigator at Kavaratti may be quite unable to explain
an instrument such as the kolpalagai used in Bitra. Similarly, though the Amini mālmi-s were
quite unfamiliar with the rāpalagai, it was the Kiltan mālmi-s who were most knowledgeable
about it. (The distance between Kiltan and Amini is around 30 km: Amini is adjacent to
Kadmath, and there is a point in the sea between Kiltan and Kadmath from which one can
simultaneously see both islands. Mr Abdullah Koya of Kiltan was able to supply us with a
copy of the Arabic literature on the construction of the kolpalagai.)

Mr Ali Koya of Kiltan had a kamāl which he discarded for he had no use for it. Mr Harris,
also of Kiltan, kindly constructed a model, but could not explain how the instrument was
calibrated. The most knowledgeable person was Kazi Sirāj Koya of Kiltan. He could not
offhand recollect the calculations used to calibrate the instrument, but referred to a book
containing the calculations. Though Dr C. H. Koya had a copy of the book in Arabic-
Malayalam he was unable to translate it for us.

Ultimately, a model of the kamāl was obtained from Mr Aboo Backer of Kavaratti, who
had preserved it along with the kamān used by his father Mr Ahmed Malmi of Kavaratti.

The rāpalagai is clearly a lost tradition. None of the malm̄ı-s I talked to, in the various
islands, was able to explain the construction or use of the rāpalagai. One took the smaller
piece in his mouth, and raised the knots above the block, as one might do with finger
measurements. One divided the string into eight equal parts, but was unable to explain how
to add five more equal parts he thought would be needed for Kavaratti at a lower latitude.
One thought that the instrument was used to measure the speed of the boat in knots. One
remembered only snatches of some mnemonic verses related to the rāpalagai.
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The Accuracy of the Kamāl

I certainly imagined that nothing could be more primitive
than my Maldive friend’s kamāl. . . , when lo! here is some-
thing even less advanced in ingenuity!

James Prinsep9

To express this accuracy in modern terms, we proceed as follows. A glance at Table 5.1 and
Fig. 5.2 shows that the bigger piece has a range from

tan−1 36.5
21.9375× 25.4

= 3.747◦ (5.12)

to
tan−1 36.5

6.0× 25.4
= 13.45◦. (5.13)

A 90◦ increase in the elevation of the pole star corresponds to the distance from the
equator to the pole, i.e., 1

4 of the earth’s circumference, calculated using the polar radius.
Thus, a 1◦ increase in the angular elevation of the pole star corresponds to 1

360 of the polar
circumference of the earth. This differs very slightly from the equatorial circumference, and
using either gives us a figure of approximately around 69 English miles. This gives a total
range of around 670 miles. Since this range has been divided into 12 equal parts, each knot
of the kamāl corresponds to an average distance of around 55 miles. Thus, each knot of the
kamāl represented approximately half a finger increase in the elevation of the pole star, so
that the constant F0, used earlier, corresponds approximately to 4 fingers. The larger piece
was, thus, suitable for travel from Mahaladwipa (Maldives) to Mangalore.

The larger piece of the kamāl is also extremely precise at the local level. Thus, using the
two scales together with the larger piece gives an accuracy which is five times better, so that
the kamāl could actually be used to measure distances as small as some 11 miles, or better
than one shāmam which is quite extraordinary. In practical terms, this accuracy meant that
the kamāl could be used to navigate to a point within sighting distance of the target.

Such a level of accuracy was indeed needed to sail to small islands. Thus, 19th c. CE
English sailing manuals mention the difficulty in navigating to small islands, and suggest
that a good way to this would be to run into the latitude, and then adopt a course due east
or west. If this sort of thing were to be done, an accuracy of better than one shāmam (the
distance to the horizon) would be needed to ensure that one did not sail past the island
without spotting it.

In terms of angular measure, if we regard the range of around 9.7◦ as divided into 12
equal parts, each knot measures an angle of around 0.8◦ or 48′. If the two scales are used
together, the precision is improved by a factor of 5, so that the precision is around 10′ of the
arc.
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Similar considerations apply to the smaller piece which covers a range from

tan−1 32.7
2.625× 25.4

= 26.168◦ (5.14)

to
tan−1 32.7

17.375× 25.4
= 4.237◦ (5.15)

divided into 8 knots, with each knot corresponding to 2.75◦ or around 189 (English) miles.
The use of both scales would enable this instrument to do 5 times better and measure dis-
tances of around 40 miles. (If we use the figure 5

24 , the two scales together could do only 3
times better, so that last figure would be only around 63 miles.)

Note that the total range of the instrument is a little above 1500 miles north–south. The
upper end of this scale corresponds to the latitude of Karachi. Thus, the instrument reflects
the fact that at higher latitudes (after crossing the latitude of Mangalore, say), a very high
level of accuracy was no longer critical since the coastline was near. This applied also to the
eastern side, where sailors from Minicoy typically travelled as far as Singapore.

Thus, in totality, the kamāl is a remarkable instrument with a huge overall range of 1500
miles, together with a striking accuracy of 11 miles at the lower end of the range. The
construction of the kamāl also shows how instruments can be built from simple materials to
measure angles with an accuracy of 10′.

Clearly, it was James Prinsep who lacked the ingenuity needed to understand the con-
struction of the instrument. Moreover, carried away by his sense of racist superiority he
failed to exercise common sense and ask how the island-based navigators could have rou-
tinely managed to sail back to small islands with inaccurate techniques of navigation. It is
also noticeable that since Prinsep’s article was first published in 1836,10 Western histories of
the subject have simply repeated his account.

The Two-Scale Principle and the Size of the Earth

The use of the two-scale principle suggests how al B̄ırūn̄ı could well have constructed an
accurate instrument for measuring angles, to measure the dip of the horizon, and hence
estimate the size of the globe, as he recorded. This answers a question, raised by S. S.
H. Rizvi,11 as to the accuracy of al B̄ırūn̄ı’s hand-made instrument. Rizvi speculated that
al B̄ırūn̄ı’s hand-made instrument could well have had an accuracy of 1◦ for him to have
arrived at as accurate an estimate as he did. The kamāl shows how higher precision by nearly
an order of magnitude is easily possible for a hand-made instrument. The reason for Rizvi’s
extra-conservative estimate is obviously a false history of science which wrongly suggests to
us that this two-scale technique was invented by Vernier, though it has been known to Europe
from at least the times of Pedro Nunes (who also used it in an instrument to measure angles).
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Instrumental Accuracy and the Accuracy of Trigonometric Values

Such accurate instruments for angle measurements probably first came into widespread use
with the rise of Arabic navigation, sometime between Brahmagupta and Vat.eśvara, and that
would explain very clearly why Vat.eśvara found Brahmagupta’s sine table very gross, and
needed to alter it to a more precise sine table with stored values at intervals of 56′ 15′′,
together with a second-order procedure for interpolation. In fact, since the accuracy of the
instrument is about ten times better, this would also explain very clearly why even Vat.eśvara’s
sine values would have been found to be “too gross” by later authors, who would have needed
even more accurate sine values, together with higher order interpolation procedures.

By the end of the 18th c. Europeans had picked up a lead in navigation. Just as the
Arabs had earlier made fun of the European method of navigating by charts, the European
now started ridiculing the “little pieces of wood and string” used by the Arabs. We see that
“little pieces of wood and string” that the Europeans made fun of can make a formidable
navigational instrument that can be used to determine latitude and longitude, especially
when combined with an advanced knowledge of trigonometry (calculus), and the ability to
carry out mental calculations. What the British actually achieved by teaching navigation in
the Lakshadweep islands was to destroy the indigenous knowledge, without replacing it with
something particularly better. On the contrary, whether deliberately or otherwise, what the
British really succeeded in doing was to destroy the self-sufficiency of the islanders, and to
make their way of life dependent on imported instruments and books manufactured in far
away lands.

III
LONGITUDE DETERMINATION

While the kamāl is a very accurate instrument for measuring north–south distances, it does
not enable the measurement of east–west distance. The Lakshadweep islands (barring Mini-
coy) are very small coral islands, and accurately navigating to small islands is a difficult mat-
ter, which requires the sort of precision that was not easily available to late 19th c. European
navigators, as already noted.

Traditional Indian Methods of Longitude Determination

Therefore, it is worth recollecting the several traditional methods which enabled precise an-
gle measurements, coupled with precise trigonometric values, to be used also in connection
with the measurement of longitude at sea.

First, we recall that the principle of time varying with longitude was well known to Ārya-
bhat.a (Gola 13):
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When it is sunrise at Lanka, it is sunset at Siddhapura, midday at Yavakoti, and
midnight at Romaka.

The four names refer to four equidistant imaginary cardinal points on the equator, with
Lanka being the point at which the Indian prime meridian (Meridian of Ujjayin̄ı) met the
equator.

Secondly, the stock technique for determining longitude on land was to use the time
difference between the local time of an eclipse and its calculated time on the prime meridian
(LaghuBhāskar̄ıya, I.29)

The difference between the computed and observed times of an eclipse is the
longitude in terms of time.

Thirdly, we recollect Bhāskara I’s method of determining longitude by the method of
ephemeris, using a water clock (Mahā Bhāskar̄ıya, II.8):

On any day calculate the longitude of the Sun and the Moon for sunrise or sun-
set without applying the longitude correction, and therefrom find the time (since
sunrise or sunset), in ghat̄ıs, of rising or setting of the Moon; and having done
this, note the corresponding time in ghat̄ıs from the water clock. From the differ-
ence, knowledgeable astronomers can calculate the local longitude in time.

Fourthly, we recall Bhāskara I’s method of solving a plane “longitude” triangle (Mahā
Bhāskar̄ıya II.3–4):

Subtract the degrees of the latitude of . . . [a known point on the prime meridian]
from the degrees of the [local] latitude, then multiply [the resulting difference
of latitude] by 3299 minus 8/25 [the radius of the earth], and divide [the result]
by the number of degrees in a circle [i.e., 360]. The resulting yojana-s constitute
the kot.̄ı [upright of the right-angled “longitude” triangle]. The oblique distance
from the local place [to the point on the prime meridian chosen above], which
is known. . . is the karn. a [hypotenuse]. The square root of the difference between
the square of the karn. a [hypotenuse] and the kot.̄ı [upright] is defined by some
astronomers to be the distance [in yojana-s of the local place to the prime merid-
ian].

We also recollect from Chapter 4 that the above Indian method uses the radius of the
earth, or equivalently a knowledge of the distance per degree latitude, a, so that it is perfectly
possible to solve the longitude triangle from a knowledge of the difference of latitude l and
the course angle C, to obtain the departure p:

p = a× l × tanC. (5.16)
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Furthermore, we recall that this Indian technique, available from before the 5th c., was not
available to European navigators in the 16th and 17th c. CE, for the reason that Europeans
lacked a precise knowledge of the size of the earth until the end of the 17th c. CE.

Finally, we recall that, knowing the size of the earth, it was an easy matter to convert
distance from the prime meridian to longitude, and it was only necessary to invert a rule
explicitly stated by Bhāskara I (Laghu Bhāskar̄ıya, I.32), relating this distance to longitude:

The yojanas (of the distance of the prime meridian) from the local place are
obtained on multiplying the longitude in ghat̄ıs by the local circumference of the
Earth and dividing (the product) by 60.

Some Clarifications

The method of determining longitude/departures by solving a plane triangle was known to
Arab navigators as a tirfa calculation. However, the examples of actual tirfa calculations given
by Tibbets are rather crude, suggesting that Arab navigators were unaware of elementary
plane geometry in the 16th century CE, and did not even know that two sides of a triangle
are greater than the third.

Such historical depictions tend to raise a doubt. As we shall see later on, the real question
is whether the slightest credibility is to be attached to Western accounts of history. For the
time being, however, let us address this doubt. Could the techniques in the Laghu Bhaskariya
have diffused to the islanders over a period of several centuries? Could the islanders have
known about Mādhava’s more precise sine tables? Clearly it would be inappropriate to as-
sume that the average navigator was as knowledgeable as Bhāskara or al B̄ırūn̄ı. It would be
equally inappropriate to assume that the average navigator on the Indian ocean or Arabian
sea was as unskilled in astronomy and mathematics as Columbus or Vasco da Gama. There
are two reasons for this.

First, navigational techniques here placed far greater reliance on celestial navigation.
Unlike Columbus, therefore, Indian, Arabic, or Chinese navigators had to have some knowl-
edge of astronomy. A modern-day analogy may help to explain the cultural difference: a
semi-literate carpenter in India today is likely to be better at mental computations than a
cash-register operator at a US supermarket, who has never done arithmetic without the aid
of machine or paper. However, colonial historians found it galling to admit that the average
navigator by the stars knew more than their own star navigators. How much knowledge of
astronomy a navigator might have had, naturally depended on his competence, but given
that his own life and the lives of many others depended on his knowledge, it would be a rare
navigator who did not seek to expand his knowledge by acquiring at least the knowledge
incorporated in the most popular texts in astronomy. Such a navigator is unlikely to have
been much sought after.
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Secondly, because of the monsoons, a navigator here could earn a living from navigation
for at most some six months in a year. What did he do the rest of the time? Clearly, some,
at least, of the navigators would have done exactly what Kepler did: use their knowledge
of astronomy to make a living through astrology; others may have turned their attention to
tasks such as calendar-making, etc. For this purpose too they would have had to consult
the basic texts in astronomy. So it would hardly be too much to attribute to the average
navigator the knowledge available in concise practical manuals of astronomy, such as the
Laghu Bhaskar̄ıya or the KaranaPaddhati, for the reason that

both the Maha-Bhāskar̄ıya and the Laghu-Bhāskar̄ıya were popular works, having
been studied in south India up to the end of the fifteenth century. . . , the latter
being an excellent text-book for beginners in astronomy.12

To summarize, there is a difference between the knowledge required to derive and correct
the rules, and the knowledge required simply to use these rules. One must attribute to the
pre-colonial navigators at least the latter type of knowledge of astronomy.

On the Lakshadweep islands, Kunhi Kunhi Malmi, of Kavaratti for instance, made a living
partly through astrology. His preoccupations are reflected in the fact that more than 50% of
his Rahmani (released at the 10th Indo Portuguese Conference on History, INSA, New Delhi,
1998) is concerned with astrology. (Indeed Kunhi Kunhi made a good living and had two
wives—as astonishing a thing in a matriarchal society as a woman with two husbands would
be in a patriarchal society, and a definite indication of prosperity.) For the relatively simple
needs of the Lakshadweep islanders, of course, spherical trigonometry was not required,
and the solution in plane triangles, as in Fig. 5.3, was adequate.

Since some of the concerned texts, incorporating the requisite precise trigonometric val-
ues, are in Malayalam, in Kerala itself they enjoyed considerable circulation, as evidenced,
for example, from the large number of copies of Jyes.t.adeva’s Yuktibhāsā which are still in
existence, and the Karan. aPaddhati, whose encapsulated rules continue to be very popular.
(The relevant verses are also in the Karan. aPaddhati.13) So why should the relevant sine val-
ues not have been known at least to some knowledgeable navigators on the island who knew
something of the astronomical tradition in Kerala?

It is true that the islanders, like the Māpilā-s, spoke Arabic-Malayalam, and it is possible
that they were hence regarded as illiterate by both Arabs and Malayalis! None of the malm̄ı-s
I spoke to was much educated in the Western tradition, but that did not prevent any of them
from knowing about Norie’s tables. Why, then, should the earlier malm̄ı-s not have known
about Mādhava’s tables? The tirfa calculation done using these tables would indeed have
made the kamāl a complete instrument which could be used to decide both latitude and
transverse position at sea.
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Thus, the name kamāl (= complete) was justified, since the instrument could be used
across a wide range, was very accurate for navigation to small islands, and it was possible
also to determine longitude at sea from a knowledge of the difference of latitudes.

Currently-Used Techniques of Longitude Determination

As opposed to this situation prevalent with traditional knowledge, currently the islanders
use two techniques for longitude determination.

A watch (chronometer) is one technique used today by the islanders to decide longitude
(though the figure commonly stated was 5 minutes per degree of longitude).

The principle behind using a watch to determine longitude is straightforward, and well
known to all international travellers. Because of the diurnal rotation of the earth, as one
travels east, one gains time—the sun seems to rise earlier. Consider an accurate watch set to
local Bombay time, i.e., its hands read 12 o’clock when it is noon (the time of the shortest
shadow) at Bombay. If this watch is carried to Calcutta, noon at Calcutta will seem a little
early. In a complete circuit of 360◦ round the earth, the watch will appear to gain or lose 24
hours = 24 × 60 minutes, so that the watch will gain or lose 4 minutes per degree longitude.

The other technique the islanders currently use is a sand clock (tappu kupp̄ı, lit. sand bot-
tle) of 7 or 14 s and a log line (with the rope knotted at equal distances) to measure the speed
of the boat. The speed of the boat can be used to calculate the distance travelled in a known
period of time: this technique is known to be notoriously inaccurate. From a knowledge of
the speed, and the duration for which the speed was maintained, one calculates the distance
travelled. The course angle is known through a magnetic or stellar compass. Hence, the
departure can be computed by resolving the problem into the solution of a plane triangle,
as in Fig. 5.3 reproduced from Chapter 4. The solution itself was obtained using traverse
tables from British sailing manuals.

IV
THE VALUE OF BRITISH EDUCATION

The islanders have evidently learnt this technique from the British efforts to “educate” them,
as described earlier. This enables us to assess the value of British education in a microcosm.
This is useful because, compared to mathematics education, which we will consider later on,
the issues involved here are relatively simple.

First, the process of navigational education itself was initiated based on certain historical
premises. It is worthwhile examining these historical premises: while distorted historical
depictions of navigation history like that of Tibbets are amusing for the trained historian,
the dissemination of false historical narratives at the popular level has had significantly
mischievous political consequences.
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Figure 5.3: Solving the nautical triangle. The right-angled triangle shown above, also called the
plane sailing triangle, can be solved from a knowledge of either (1) course angle and distance trav-
elled, or (2) course angle and the difference of latitude. The first method was used by Europeans
in dead-reckoning navigation. The second method requires an accurate estimate of the size of the
earth: such an estimate was available to Indians from at least the 5th c. and Arabs from at least the
9th c. CE, but not to Europeans until the late 17th c. CE. Hence, European navigators could not
use the second method. This is what led to the famous problem of determining longitude at sea—a
problem specific to European techniques of navigation.

According to the grand historical narrative, the British were a great superpower, on ac-
count of their knowledge of navigation, while the islanders were “primitive” people, who
lacked a knowledge of navigation. This sort of account of the “natives” is found most clearly
in novels like Coral Island by R. M. Ballantyne.

Swept away by such fake historical narratives within which they situated themselves, the
British seem not to have stopped to think how the islanders had survived if they did not
have reliable techniques of navigation. This survival had a history going back to at least pre-
Islamic times, considering that there are statues of the Buddha on the islands, which were
subsequently defaced. Though these statues have not been dated to my knowledge, they
could quite possibly go back a long time in the past. In fact, navigation no doubt existed
also in the era when Ashoka’s daughter, Sanghamitra, travelled to the island of Sri Lanka. At
any rate the Lakshadweep islands were inhabited for over a thousand years before the British
came to them. During all this period, how did the islanders solve the problem of navigating
to small islands? (Recall that this was recognized as a difficult navigational problem by 19th
c. CE British sailing manuals.)

Apparently, swept away by the military power of the British, the islanders too did not stop
to think about it either, and the youth seem to have assumed that the navigation techniques
taught to them by the British were intrinsically superior, just as youth today thoughtless tend
to accept that Western ways are intrinsically superior. The point is that the islanders seem
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to have adopted the British techniques of navigation in a somewhat thoughtless way, and
without having made a relative assessment of the two systems, just as youth today might
adopt Western music in preference to Indian classical music without a clear understanding
of the two systems. Although a technique of navigation is more directly relevant to survival
than music, that the islanders’ choice was not informed by any such relative assessment is
confirmed by the fact that none of the islanders was able to tell me about the functioning of
the kamāl.

The process of British education changed things in two significant ways. First, the is-
landers were taught about the sextant (kamān), but not about the kamāl, and as a direct
consequence of this training they abandoned the kamāl in favour of the sextant. While stone
sextants were used in Arab astronomical observatories from the 10th c. CE, the portable sex-
tants used in navigation are made of steel. Since steel was not something they could make
themselves, the islanders became dependent on far-off British engineering for their very
survival. Merely to purchase appropriate instruments they would have needed to sail as far
off as Bombay, and those who were most closely linked to the British were the one’s best able
to survive.

What advantages the sextant (kamān) had over the kamāl was obviously not discussed
in the British text either, and the kamāl was never mentioned, just because the historical
narrative in which the British situated themselves, assured them that the progress brought
about by the march of science had made their knowledge superior to that of the “primitive”
tribes of the world.

However, the sad fact is that the sextants actually used by the islanders typically had an
accuracy of about 1◦, and hence were a lot LESS accurate than the kamāl. Thus, the British,
smug about their own superior techniques of navigation, ultimately ended up educating the
islanders in inferior techniques of navigation! Noticeably, there was no colonial plot here,
except an attempt to try and make the British empire more popular!

It is also a sad fact that the determination of longitude by using a sand clock and heaving
the log also made the situation worse for the islanders: since the islanders did not rely
on charts in the manner of the British, did not really use dead reckoning, and had no
particular use for loxodromes, since they did not intend to sail to Europe by means of charts.
The islanders would have done better by persisting with the traditional techniques of using
ephemeris time or solving the longitude triangle in the manner of the Laghu Bhāskar̄ıya, but
they were taught instead the use of traverse tables as in British sailing manuals.

That the islanders became dependent also upon British sailing manuals is clear from the
“Noorie” tables in the Rahmani of Kunhi Kunhi Koya. There was no way anyone on the is-
land could have produced such tables. Thus, the islanders became consumers of knowledge
that they could not themselves produce or even properly understand.

Thus British education systematically created a situation of dependency and inferiority
as regards both knowledge and education. While the islanders could not earlier match
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British violence and duplicity, this was not necessarily a matter of inferiority. From an ethical
perspective this made them superior rather than inferior. However, after being educated by
the British, the islanders actually became inferior, since their livelihood, which required
navigational aids, became dependent upon the British, reducing them to a state of servility.
Since the islanders never received enough education to make them producers of knowledge,
they remained passive consumers of knowledge. Thus, education, instead of serving the
purpose of liberation, became a means of bondage. Like a self-fulfilling prophecy, the fake
historical narrative was thus turned into a distressing reality.

A Revised History of the European Longitude Problem

A brief examination of the actual sequence of historical events is also worthwhile, for our
later purposes of understanding transmissions and diffusion from an epistemic perspective.

This dead-reckoning method was used extensively by early European navigators, who
plotted the ship’s course on charts to carry out the computation graphically. However, the
method of estimating the ship’s speed by “heaving the log” was well known to be extremely
unreliable.

Early Portuguese navigators, however, had no alternative to dead reckoning, since they
had not quite learnt the techniques of celestial navigation from the Arabs. In using the
kamāl, the knots are counted by keeping the string between one’s teeth; hence the name kau
(=teeth) for the pole star. Vasco da Gama’s men thought that the pilot (Malemo Cana) was
telling the distance by his teeth!

Vasco da Gama carried back a copy of the instrument “to have it graduated in inches”,14

suggesting that he did not understand the difference between a linear scale and a harmonic
scale. In fact, Europeans seem never to have quite understood the principle of harmonic
interpolation used in the kamāl.

By the mid-16th century, the Portuguese had learnt some techniques of celestial naviga-
tion. What they learnt was, however, so inadequate compared to the tremendous economic
importance of correct navigation, that in 1567 Philip II of Spain offered a big reward to
anyone who could produce an accurate method of navigating at sea. One difficulty con-
cerned latitude. From the time of Brahmagupta and the Sind-Hind tradition, it was known
that latitude could be determined from solar altitude and declination (or the transits of
circumpolar stars). The Europeans, however, had difficulties with this method, since they
relied on an inaccurate ritual calendar that was partially corrected only in 1582. (Due to
religious quarrels between Protestants and Catholics, even the corrected calendar was not
uniformly adopted in all of Europe—Isaac Newton believed he was born on Christmas day,
while many parts of Europe had already celebrated the New Year a few days before his
birth.)


