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Introduction 
It is by now widely recognised3 that the calculus had already developed in India in the 
works of the mathematicians and astronomers of the Aryabhata school: Madhava, 
Nilakantha (Tantrasangraha), Jyeshtadeva (Yuktibhasa) etc, between the 14th and 16th 
centuries CE.  These developments included infinite “Gregory/Taylor” series for sine, 
cosine and arctan functions,4 with accurate remainder terms, and a numerically 
efficient algorithm, leading to a 9 decimal-place precision table for sines and cosines 
stated in sexagesimal katapayadi notation in two verses found also in the widely 
distributed KaranaPaddhati of Putumuna Somayaji.5 The development also included 
the calculation of complex derivatives like that of arcsin   (psin x)  (Tantrasangraha 
V.53-54), and p sin x/(1+pcos x) (Sphutanirnaya III.19-20), to calculate the 
instantaneous velocities of the sun and the moon, and infinite series expansions, and 
high-precision computations of the value of π correct to 9, 10 (and later 17) decimal 
places.6 (As already noted by Benjamin Heyne7 in 1805 these developments were 
probably not confined to Kerala but were available also in Tamil Nadu, Telangana, 
and Karnataka, though this possibility has not yet been properly investigated.)  
 
A key point, that has not been noticed earlier, is this: these developments cannot be 
dismissed as “pre-calculus”, the way the works of Fermat, Pascal, Wallis, Torricelli, 
Roberval, etc. usually are. Thus, the traditional Indian number system, similar to the 
floating point numbers used in present-day computers, together with sharp estimates 
of the remainder or error term, enabled the Indian mathematicians to provide a 
rigorous rationale for the infinite series and the infinitesimal calculus.8 This was quite 
unlike the case of Newton, etc. who, lacking also the notion of real number, used 
“fluxions” or “infinitesimals”9, the exact meaning of which remained a mystery until 
the development of mathematical analysis and the clarification of the notion of 
“proof” in the late 19th century and early 20th century CE. Since the Indian 
mathematicians had a rigorous rationale which Newton could not possibly have had, 
the Yuktibhasa exposition should, a fortiori, count as calculus.  
 
It is true that the Yuktibhasa ideas of mathematics and proof differ from the Platonic 
and Hilbertian idea that mathematics must be divorced from the empirical; however, it 
is hard to see, from either a theoretical or a practical point of view, why acceptance of 
the Platonic point of view and Platonic authority ought to be a key ingredient of 
mathematics. In particular, the Platonic insistence on a divorce from the empirical 
leaves hanging in the air the question of what logic ought to underlie a proof,10 
whereas acceptance of the empirical would mean a change in the notion of proof, 
since different criteria are used to validate a physical theory. Since this paper is 
concerned with transmission, rather than epistemology, we do not pursue this any 
further. 
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Prior to Vasco da Gama there is ample evidence of the import of Indian mathematical 
knowledge into Europe.11 The history of Indian arithmetical techniques imported into 
Europe via the Arabs as “algorismus” texts is now well known. (Algorismus is the 
Latinized version of Al Khwarizmi (9th century CE), who translated the arithmetical 
and astronomical texts of the 7th century CE Brahmagupta.) These “algorismus” 
techniques were first introduced into Europe by Gerbert (Pope Sylvester III) in the 10th 
century CE, but it is only in the 16th century CE that their final triumph over abacus 
techniques started being depicted on the covers of arithmetical texts.12 On the other 
hand, there is also, from after the late 17th century, ample evidence of the large scale 
import of Indian texts and manuscripts, tens of thousands of which are today housed 
in European libraries13. Our primary hypothesis for investigation is that this process of 
importing Indian texts continued also during the unstudied intervening period of the 
16th and 17th century.  Our general hypothesis is that the arrival of Vasco da Gama in 
Calicut not only short-circuited the traditional Arab route for spices, it also short-
circuited the traditional Arab route for knowledge of Indian mathematics and 
astronomy.  
 
Further, it is our hypothesis that the epistemological difficulties encountered with 
infinitesimals in Europe from the 17th to the 19th centuries CE arose, exactly like the 
difficulties with sunya (zero), due to the import of techniques with a different 
epistemological base.14 This has important pedagogical implications. However, in this 
paper we will set aside the epistemological and pedagogical issues and focus on the 
question of transmission.  
 
What is the evidence for transmission? Before addressing this question we need to 
address a meta-question: what is an acceptable standard of evidence for transmission? 
This meta-question seems not to have been addressed at all in the literature on the 
history of mathematics.15 In the past there have been far too many claims of 
transmission, where the evidence produced is farcical; for example, in support of the 
widespread claim of the transmission of Ptolemaic astronomy from Alexandria to 
India, one line of evidence, proposed by Thibaut, is that Varahamihira’s use of 
“Paulisha” suggests that it could have been derived from “Paul” (rather than Pulisha 
or Pulastya, one of the seven sages forming the constellation known as the Great 
Bear). If this be the standard of evidence, there is nothing for us to prove.  For the 
works of Paramesvara, Madhava, Nilakantha, and Jyeshtadeva, clearly precede those 
of Fermat, Pascal, Gregory, Wallis, Newton, and Leibniz, and India was clearly 
known (and actively linked) to Europe by the 16th century CE.  
 
However, we are aware that, for some unfathomable reasons, the standard of evidence 
required for an acceptable claim of transmission of knowledge from East to West is 
different from the standard of evidence required for a similar claim of transmission of 
knowledge from West to East. Priority and the possibility of contact always establish 
a socially acceptable case for transmission from West to East, but priority and definite 
contact never establish an acceptable case for transmission from East to West, for 
there always is the possibility that similar things could have been discovered 
independently. Hence we propose to adopt a legal standard of evidence good enough 
to hang a person for murder. Briefly, we propose to test the hypothesis on the grounds 
of (1) motivation, (2) opportunity, (3) circumstantial evidence, and (4) documentary 
evidence.  
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(1) Motivation 
 
The motivation for import of knowledge derived from the needs of greater accuracy in 
(a) navigation, (b) the calendar, and (c) practical mathematics (used for everyday 
financial calculations). Christoph Clavius, a key figure in the transitional period, 
exhibits all three concerns: since he (a) authored a book on practical mathematics, (b) 
headed the calendar reform committee, and (c) was a student of the famous 
navigational theorist Pedro Nunes.  
 
Navigation was clearly the key motivation, being then a matter of the greatest strategic 
and economic importance for Europe. Early navigators like Columbus, and Vasco da 
Gama did not know stellar navigation,16 and dead reckoning was of little use in 
“uncharted” seas unless, like Columbus, one was aimed at so massive a shore line, 
that one could hardly hope to miss it! Various European governments officially 
acknowledged both (a) the European ignorance of navigational techniques, and (b) the 
enormous interest in learning more. Many governments also widely publicised this 
official acknowledgment by instituting huge prizes for anyone who could provide an 
accurate technique of navigation. These included the Spanish government (1567, 
1598) the Dutch government  (1632), the French government (1670), and the British 
government (1711), which last prize was finally claimed in 1762 by Harrison with his 
chronometer (which came into general use only by the 19th century). The value of 
these prizes gives an indication of the importance that various governments attached 
to the problem of navigation: to get an idea of the true value of these prizes we 
observe that e.g. the British government’s prize of 1711 was more than 300 times 
Newton’s annual fellowship.  
 
Consequently, not only kings and parliaments, but also very many of the leading 
scientists of the times were involved in these efforts. Galileo, for example, 
unsuccessfully competed for the revised Spanish prize for 16 years, before shifting his 
attention to the Dutch prize. Colbert wrote personally to all the leading scientists of 
Europe, offering large rewards, and selected from the replies received to start the 
French Royal Academy “to improve maps, sailing charts, and advance the science of 
navigation”. One of the stated aims of the newly founded Royal Society was: Finding 
the longitude.  Newton testified before the British parliament in connection with this 
problem of navigation.  
 
However, the popular accounts of the history of navigation have focussed on the 
development of the marine chronometer, which relates to the 18th century CE. Our 
concern is with navigation in the 16th and 17th centuries CE, when the focus was on 
stellar and celestial navigation, apart from geodesy and geography. Indeed the 
enormous growth of interest in mathematics and astronomy  in Europe in the 16th and 
17th centuries CE, is directly attributable to the practical benefit  that these studies 
were expected to have on the navigational problem.    
 
Secondly, the popular account of navigation history has focussed almost exclusively 
on the problem of longitude determination, whereas in the 16th century CE, latitude 
determination was the key problem, because of an inaccurate calendar, and the then 
lack of knowledge of celestial navigation in Europe. Latitude determination also 
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involved a problem of timekeeping, but this timekeeping pertained to the calendar 
rather than the chronometer.  
READ TO HERE: 
Finally, we do need to ask: how did the European attack on the problem of navigation 
and the related problems of astronomy and mathematics proceed? Did Europe 
abandon a 500 year old tradition of importing knowledge and books from Arabs and 
India and suddenly switch to a completely autonomous path of knowledge 
development? Did Europeans turn a blind eye to the knowledge resources of the areas 
with which they were hoping to establish new trade routes? The slightest acquaintance 
with European texts of the 16th and 17th centuries CE shows that exactly the contrary 
was the case. The “knowledge of the ancients” was most highly valued, and was 
sought after by such disparate personalities as Stevins, Mersenne and Fermat. All of 
them actively sought out knowledge from ancient texts, regarding this as one of the 
superior ways of attacking the problem, and as we shall explicitly see later on in this 
paper, in “ancient” texts they clearly included texts from other lands.  
 
What sorts of texts might the Europeans have searched for to learn more about 
navigation? As we saw above, stellar/solar navigation naturally related to the study of 
astronomy and timekeeping, which was, then, inseparably linked to mathematics. 
Most Indian texts on mathematics, too, were located in the context of astronomy and 
timekeeping. (In particular, this is true for all the texts on the calculus, mentioned 
above.) The term jyotisa, as in Vedanga Jyotisa, meant timekeeping.17  Stellar 
astronomy and mathematics was used for timekeeping, and also for constructing the 
calendar.  
 
Moreover, the navigational and calendrical knowledge that the Europeans needed and 
sought in ancient texts was, in fact, available in Indian mathematical and astronomical 
texts. The widely distributed Laghu Bhaskariya (abridged work of Bhaskara) and 
Maha Bhaskariya  (extensive work of Bhaskara) of the first Bhaskara (629 CE) 
explicitly detailed methods of determining the local latitude and longitude, using 
observations of solar declination, or pole star altitude, and simple instruments like the 
gnomon, and the clepsydra.18 Since local latitude could easily be determined from 
solar declination by day and e.g. pole star altitude at night (using a common 
instrument like the kamal), an accurate sine table was just what was required to 
determine local longitude from a knowledge of latitudinal differences and course 
angle. The simplest method was to solve a plane triangle. The Laghu Bhaskariya 
already states the criticism that determination of longitude by a calculation involving 
plane triangles is not adequate because of the roundness of the earth. Later texts like 
the Siddhanta of Vatesvara (904 CE) pointed out that these techniques needed to be 
corrected by applying spherical trigonometry.  Al Biruni, the 10th-11th century scholar, 
who visited India on behalf of Mahmud of Ghazni, and systematically studied and 
translated Indian mathematical and astronomical texts, explicitly used these 
techniques of spherical trigonometry to determine local latitudes and longitudes in his 
treatise on mathematical geography.19  
 
Exactly this technique started being tried in Europe in the 16th century, when the 
centre of navigational excellence in Europe had shifted from Florence to Coimbra. In 
the first half of the 16th century, Pedro Nunes studied motion on the sphere along a 
given rhumb line, or a given course20. Evaluating such a path or a loxodromic (Gr. 
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loxos = oblique, dromos = course) curve is exactly equivalent to the fundamental 
theorem of calculus: 21 given the tangent at every point, to determine the curve passing 
through these points which has those tangents. It is very interesting that these 
loxodromic curves were, in fact, studied by Pedro Nunes and Simon Stevin22 using 
sine tables, and the above stated technique,23 with a solution in spherical triangles, 
though the triangles involved were not strictly spherical, as Stevin observed. (The 
exact technique by which Mercator obtained the loxodromic curves for his famous 
chart is not known, but was probably similar.) The conjectures of Pedro Nunes were 
tested in a voyage to Goa, in the 1540's during which they reportedly failed, 
presumably due to inaccurate techniques of calculation, inadequate sine table, and 
other factors listed below.   
 
Though the Europeans, motivated by navigation, were actively seeking the knowledge 
of determining local latitude and longitude through stellar astronomy, and though this 
knowledge was available in Indian mathematical texts, there were three things that 
impeded their search. They lacked: (a) knowledge of practical and mental arithmetic, 
(b) an accurate calendar, and  (c) an accurate estimate of the size of the earth. An 
accurate estimatew of the size of the earth was needed for the calculation of 
longitudes/departures, from a knowledge of only latitude differences and course 
angle.24 While Caliph al Mamun had confirmed through empirical observations in the 
9th centruy CE, the estimates of the equatorial radius of the earth given in Indian 
astronomical texts, and al Biruni had implemented a cheaper and easier technique to 
confirm these,25 Columbus undid this. To sell his idea of sailing West to reach the 
East, he underestimated the size of the earth by 40%. Presumably due to Columbus’ 
“success” this error persisted, with, for example, Newton’s initial estimates being off 
by 25%, until Picard’s accurate re-determination of the size of the earth, in 1671, 
funded by the French Royal Academy as its first scientific effort.  
 
Secondly, in the first part of the 16th century lacking even an accurate calendar, and 
lacking techniques of calculation, the difficulty was with determining latitude 
correctly. It has been overlooked in the popular history of navigation that the 
longitude problem was preceded by a latitude problem. Well before the attempt to 
construct an accurate chronometer to solve the longitude problem, the attempt was to 
construct an accurate calendar to solve the latitude problem.   
 
Thus, Vasco da Gama was unacquainted with instruments like the kamal or rapalagai  
used to determine latitude by measurement of pole-star altitude. This instrument was 
used by the Indian pilot who navigated him across the Arabian sea from Melinde in 
Africa to Calicut in India. Since the instrument has a string, which is held with the 
teeth, and since the instrument uses the pole star, called kau in Malayalam, a term 
which also means teeth, Vasco da Gama thought the pilot was telling the distance by 
his teeth! The instrument has a string on which are tied knots in harmonic proportion: 
not realising this, Vasco da Gama carried back a copy of this instrument to get it 
graduated in inches! 
 
While this technique was presumably mastered by the Europeans by the mid-16th 
century CE, this was useful only at night. The standard technique for determining 
latitude in day time was to use solar declination. While a great variety of instruments 
were available for measuring solar declination, linking solar declination to the local 
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latitude required an accurate calendar. The European calendar, then in use, was 
unchanged since Roman times, and was inaccurate because it was a solar calendar 
which assumed that the length of the year was 365 ¼ days.  Making the calendar 
accurate was a problem which involved the date of the equinoxes, identical with the 
ritual concern with the date of the Easter festival. By 1545 CE this problem had been 
recognised by both navigators (like Nunes) and by the church which set up a 
committee to review the date of Easter.     
 
Thus, it was in this direction of correcting the calendar that the European efforts to 
gather knowledge were first focussed. As already stated above, the calendar, in India, 
was constructed by jyotisi-s, who used jyoti manuals that also explicitly stated 
techniques of  determining local latitude and longitude through observations using 
simple instruments and possibly complex calculations.  
 
How did the Europeans gather local knowledge? Were they familiar with local 
languages? Like al Biruni was to Mahmud of Ghazni, the Jesuits were to the 
Portuguese an intelligence gathering arm. The Jesuits learned the local languages like 
Malayalam, Telegu and Tamil26 easily enough, and Valignano declared that it was 
more important for Jesuits to learn the local language than to learn philosophy. 
However, the Jesuits were (a) deficient in knowledge of mathematics, and (b) 
constrained by an inaccurate ritual calendar.  Christoph Clavius, who had studied 
under the famous Pedro Nunes at Coimbra, realised this handicap. He reformed the 
Jesuit mathematical curriculum at the Collegio Romano in the 1570’s, and later went 
on to head the committee which reformed the Gregorian Calendar to which the Pope 
gave his assent in 158227.  
 
Clavius also wrote a text on practical mathematics, and compiled and published a 
tables of sines28 which could be looked up without the need for any mental calculation. 
These tables, presumably, were intended to replace the tables of Regiomontanus, taken 
from Arabic sources, and those of Rheticus, who perhaps also obtained his information 
from Arabic sources, like Copernicus.29 Thus, Clavius recognized and strove to 
remove all the drawbacks listed above.  The need for more accurate sine tables for 
navigational purposes was stressed also by Clavius’ contemporary, Simon Stevins, in 
his criticism of the work of Pedro Nunes. Stevins explicitly states Aryabhata’s value of 
π, observing that it is more accurate than that of Regiomontanus, who came nearly a 
thousand years after Aryabhata.30 (As is well known, Stevins contemporary, Ludolph 
von Ceulen devoted a lifetime to getting increasingly accurate values of π.) 
 
(2) Opportunity 
The famous Matteo Ricci was in the first batch of Jesuits trained in the new 
mathematics curriculum introduced in the Collegio Romano by Clavius31. He also 
went to Lisbon to study cosmography and nautical science. Ricci was then sent to 
India in 1578. While the Portuguese had shifted their headquarters to Goa, the Jesuits 
maintained a large presence in Cochin (until the Protestant Dutch closed down the 
Cochin College around 1670). Subsequently many other scientist Jesuits trained both 
by Clavius or Grienberger were sent to India. Most notable of these, in terms of their 
scientific activity in India, were Johann Schreck32 and Antonio Rubino33. The former 
had studied with the French mathematician Viete, well known for his work in algebra 
and geometry. 
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At some point in their stay in India these Jesuits went the Malabar region including 
the city of Cochin, the epicentre of developments in the infinitesimal calculus. 
Further, in order to not only aid conversions but also to collect local knowledge, the 
Jesuits learned the local languages like Malayalam, Telegu and Tamil34. 
 
As mentioned above, Ricci was in search of Indian calendrical knowledge. He and the 
other Jesuits could not but have noticed the discrepancy between their calendar and 
the local calendar. For example, the Jesuits were accustomed to the idea that festivals 
like Christmas fell on a fixed day of their calendar so they could not have failed to 
notice that the major Indian festivals like Dussehara, Diwali, Holi, Sankranti etc., did 
not fall on the same days of the Julian calendar. However, the typical Jesuit before 
Matteo Ricci probably did not know enough about astronomy to have known the 
difference even between the sidereal year (the basis of the Indian calendar) and the 
tropical year (the basis of the Julian/Gregorian calendar); so they could hardly have 
been expected to understand the complexities of the Indian calendar. However they 
could easily have acquired the knowledge in manuscript form and sent it back to 
either Maffei in Portugal or to Clavius in the Collegio Romano for analysis. Let us 
assess the likelihood that this did, in fact, happen.  
 
In India, preparing the calendar (pancanga) was and remains to this day the task of the 
jyotishi. The typical  jyotishi relied (and still relies), like a clerk, on a handbook  
of rules, without bothering to go into too many details of how the rules were derived.  
The standard treatises that were consulted and are today still consulted for this 
purpose are the Laghu Bhaskariya, and, in Kerala, the KaranaPaddhati.   These are in 
the nature of calendrical manuals, and so are widely distributed throughout the 
country, since they are used every year to determine the dates of a large number of 
festivals. Depending upon differences of religion, caste, and region, each group of 
people only accept as authoritative a pancanga (almanac) prepared by a particular 
family.  Thousands of families of pancanga makers were hence involved in this 
process of calendar making, across the country.35 So, if Matteo Ricci did try to find 
out about the calendar from a Brahmin source in Cochin, in the heart of Kerala, as he 
explicitly stated he was trying to do, it is difficult to conceive that he did not run into 
these verses incorporated in manuscripts like the Tantrasangraha, Yuktibhasa, 
Kriyakramakari, and the KaranaPaddhati. It may help to reiterate that the 
KaranaPaddhati, etc incorporate Madhava’s sine table, in a single verse, along with 
the cosine table in another verse.  

We also emphasise that the Jesuits had much more than a casual interest in the 
calendar. For at just about that time, Matteo Ricci’s teacher, Christoph Clavius was 
busy heading the commission that ultimately reformed the Gregorian calendar in 
1582, an event that had been preceded by centuries of controversy.  The 1545 Council 
of Trent had already acknowledged the error in the Julian calendar, and had authorised 
the Pope to correct it. So Matteo Ricci’s interest in the Indian calendar was not a 
casual one, but was an effort preceded by years of preparation and study, and came at 
a time when the Jesuit interest in both India and the calendar was at a peak.   
 
Finally, we emphasise that Matteo Ricci’s mathematical preparation was most suited 
to the task at hand. Christoph Clavius had written a commentary on the Sphere of 
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Sacro Bosco, (after studying the Sphere of Pedro Nunes) and had published in 1580 a 
large 645 page book on Gnomonices.  The sphere (gola) and the gnomon (shanku) 
were the two key topics needed to understand Indian astronomy and timekeeping: 
Aryabhata devotes a chapter to the sphere, while Vatesvara has a whole book on it. 
Ricci had studied nautical science along with the Cosmographia of Apian, so he could 
hardly have missed the significance and importance of precise sine values. The latter 
Jesuits such as Schreck and Rubino were just as qualified to undertake this mission to 
acquire knowledge36.  
 
Ricci went to Cochin after taking his orders. He remained in touch with the Dean of 
the Collegio Romano. Writing from Cochin to Maffei, he explicitly acknowledged 
that he was trying to find out about the calendar from Indian sources, both Hindus and 
Muslim. (For details and references, see Section 4 below.) 
 
We emphasise that the Jesuits had much more than a casual interest in India. For at 
just about the time that Matteo Ricci was in Cochin, in 1580, the Mughal emperor 
Akbar invited the Jesuits to his court. This was represented in Rome as a sign of his 
imminent conversion, an event of the greatest importance, which could bring along 
with it all the political and material benefits that the Roman church obtained from 
Constantine; three high-level missions were sent to Akbar’s court. Matteo Ricci was, 
at the same time, writing back sending details of the Mughal army.  So Matteo Ricci’s 
interest in the Indian calendar was not only not a casual one, preceded as it was by 
years of preparation and study, but came at a time when the Jesuit interest in both 
India and the calendar was at a peak.   
 
(3) The Scenario of Transmission 
Before we move on to the documentary evidence for transmission to Europe of the 
calculus that had developed in India, in the works of the mathematicians and 
astronomers of the Aryabhata school between the 14th and 16th centuries, it is apposite 
to recapitulate. There clearly was strong motivation for the transmission in the needs 
of navigation and the calendar reform, which were recognised as the most important 
scientific problems of that age in Europe. Europeans, particularly Jesuits,  had ample 
opportunity to access the texts and calendrical almanacs in which this information was 
to be found, not only in the straightforward sense that they knew the local languages 
well, but also in the sense that trained mathematicians were sent for the express 
purpose of collecting the knowledge available in these texts.   
  
Let us now turn to detail the circumstantial and documentary evidence, for it helps 
also to understand how this knowledge, after arriving in Europe, diffused in Europe. 
(Apart from historical curiosity, this is also a matter of contemporary pedagogical 
significance, since it enables us to assess, in a non-destructive way, the possible 
impact of introducing today the study of calculus with a different epistemological 
basis.)  
 
We know too little even to conjecture anything about the accumulation of knowledge 
in Coimbra, nor exactly what happened to this accumulated knowledge after Jesuits 
took over control of the university after about 1560. After 1560, in line with the above 
reasoning, our working hypothesis, or scenario, is that over a 50 year period, say from 
1560 to 1610, knowledge of Indian mathematical, astronomical and calendrical 
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techniques accumulated in Rome, and diffused to nearby universities like Padova and 
Pisa, and to wider regions through Cavalieri and Galileo, and through visitors to 
Padova, like James Gregory37. Subsequently, it also reached Paris where, through the 
agency of  Mersenne, and his study circle, it diffused throughout Europe.   
 
Mersenne, though a minim monk, had received a Jesuit education, and was closely 
linked to Jesuits. Mersenne’s correspondence reveals that Goa and Cochin were 
famous places in his time,38 and Mersenne writes of the knowledge of Brahmins and 
“Indicos”,39 and mentions the orientalist Erpen and his “les livres manuscrits Arabics, 
Syriaques, Persiens, Turcs, Indiens en langue Malaye”.40 Mersenne’s study circle 
included Fermat, Pascal, Roberval etc., and Mersenne’s well-known correspondence 
with leading scientists and mathematicians of his time, could have helped this 
knowledge diffuse throughout Europe. (Newton, as is well known,41 followed Wallis, 
and Leibniz himself states, he followed Pascal.) Of course, acquisition of knowledge 
of Indian mathematics could hardly have been a controlled process, so that many 
others, like the Dutch and French, for instance, could have simultaneously acquired 
this knowledge directly from India, without the intervention of Rome.   
 

(3) Circumstantial Evidence 
With this scenario as the background, we can ask: what sort of circumstantial 
evidence can we hope to find? Certainly it would be absurd to expect citations in 
published work! The tradition in Europe of that time was that mathematicians did not 
reveal their sources. When they could get hold of others’ sources, they copied them 
without compunction. The case of e.g. Cardan is well known, and there are well 
documented cases against, e.g. Copernicus,42 Galileo43, Descartes44, etc., of copying 
from others, whether or not such copying amounted to “plagiarism”.  Under these 
circumstances, mathematicians naturally kept their sources a closely guarded secret: 
they published only problems, not their solutions, and challenged other 
mathematicians to solve them. 
 
(a) Fermat and Pell’s Equation.  
One such challenge problem was proposed by Fermat, and has come to be known as 
Pell’s equation (for no fault of Pell). “In a letter of February 1657 (Oeuvres, II, 333-
335, III, 312-313)  Fermat challenged all mathematicians (thinking in the first place of 
John Wallis in England) to find an infinity of integer solutions of the equation 

122 =− Ayx , where A is any nonsquare integer.”45 Mathematicians in Europe were 
unable to solve Fermat’s challenge problem for over 75 years, until Euler published a 
general solution in 1738. In February 1657,  Fermat also wrote a letter to Frenicle, 
where he elaborated upon this problem:46 “What is for example the smallest square 
which, multiplied by 61 with unity added, makes a square?”  
 
As Struik further notes, Indian mathematicians had a solution to this problem. In fact, 
strangely enough, exactly the case of  A=61 is given as a solved example in the 
BeejGanita text of Bhaskara II.  This coincidence is not trivial when we consider that 
the solution   x = 1766319049, y = 226153980 involves rather large numbers.47 A 
similar problem had earlier been suggested by the 7th century Brahmagupta, and 
Bhaskara II provides the general solution with his chakravala method. Thus, Fermat’s 
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challenge problem, strongly suggests a connection of Fermat with Indian mathematics: 
Fermat probably had access to some Indian mathematical texts like the BijaGanita.    
 
Euler certainly knew about Indian astronomy (hence mathematics), for Giovanni 
Cassini, then the most reputed astronomer of France,  had already published an 
account of “Hindu astronomy” in  1691,  and Euler wrote on the “Hindu year” 48  
(sidereal  year; the pope’s bull was still not acceptable e.g. to Protestant Britain, until 
1752). Since numerous Indian astronomical texts deal with “Pell’s” equation, Euler 
had presumably learnt about this as well. However, we are not aware that he 
acknowledged this when he published his solution to what he called Pell’s equation.  
 
This suggestion that Fermat knew something about Indian mathematics is reinforced 
by Fermat’s friendship not only with Mersenne, but with Jacques de Billy (1602-
1669), a Jesuit teacher of mathematics in Dijon. Fermat also had the habit (then a 
general proclivity) of searching for knowledge in ancient books.49   
 

(b) Fermat, Pascal and the Calculus 
“One of Fermat’s most stunning achievements,” continues Aczel, “was to develop the 
main ideas of calculus, which he did thirteen years before the birth of Sir Isaac 
Newton [in 1642].” Fermat’s and Pascal’s approach to the calculus reinforces the 
belief in a connection with Indian mathematics. It was at Mersenne’s place that Pascal 
met Descartes who remarked in his La Geometrie of 1637 about the impossibility of 
measuring the circumference of a circle: “The ratios between straight and curved lines  
are not known, and I even believe cannot be discovered by men, and therefore no 
conclusion based upon such ratios can be accepted as rigorous and exact.” Therefore, 
there was not, at this point of time, anything that could be called an indigenous or 
acceptable tradition of calculus.  
 
However, in Indian mathematics, from the time of the sulba sutras, because of the 
different epistemological base, measuring the length of a curved line by laying a rope  
(sulba) along it, and straightening it (or measuring a general area by triangulation) has 
been quite an acceptable process, used to obtain a value of π. In fact, Aryabhata states 
that the area of a general plane figure should be obtained by triangulation,50 before 
going on to give an improved measure of the (curved) circumference of a circle in 
terms of the diameter (a straight line), in the next verse.51 In the very next verse he 
explains how his sine table is derived by approximating small arcs by line segments.52  
It is therefore quite natural to find this eventually developing into the calculus in the 
Tantrasangraha, whose author Nilakantha belonged to the Aryabhata school, and 
wrote wrote a lengthy commentary on the Aryabhatiya, almost exactly a thousand 
years after it.  
 
Nilakantha’s younger contemporary, Jyeshtadeva, author of the Malayalam 
Yuktibhasa (“Discourse on Rationales”), has a chapter on the circle, explaining the 
method of deriving the improved sine table stated in the Tantrasangraha. The key 
step in this derivation53 is the evaluation of: 
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This is also exactly the approach to calculus adopted by Fermat, Pascal, Wallis, etc. to 

evaluate the area under the parabolas kxy =  , or, equivalently, calculate .dxxk∫   As 

Pascal remarked,  about this formula, it serves to solve all sorts of problems of the 
calculus. “Any person at all familiar with the doctrine of indivisibles will perceive the 
results that one can draw from the above for the determination of curvilinear areas. 
Nothing is easier, in fact, than to obtain immediately the quadrature of all types of 
parabolas and the measures of numberless other magnitudes.” This formula has been 
attributed to Fermat in 1629; Roberval, another member of Mersenne’s circle, also 
worked on it. Earlier Cavalieri, a student of Galileo, had stated this formula, without 
proof,  in 1635, after waiting five years for Galileo to write on infinitesimals. John 
Wallis, who visited Pisa, verified the formula for a few values of k, and obtained his 
value of  π using similar series expansions.  
 
The curious thing is that though so many European mathematicians seem to have 
suddenly “discovered” this formula at about the same time, the formula had no natural 
epistemological basis in European mathematics, either of that time or for the next two 
centuries, for European mathematics was oriented towards “proof” rather than 
“calculation”, and shared the Greek “horror of the infinite”.  Even today, despite the 
compelling changes of technology, due to widespread use of supercomputers, the 
situation has not entirely changed, and as in the time of Clavius, calculation continues 
to be regarded as “inferior” to “proof”. 
 
Though the European mathematicians were unable to prove the above formula or 
provide a rigorous rationale for it within their epistemology,54 even the techniques by 
which they attempted to prove the formula suggests transmission. For example, Pascal 
tried to establish55 the formula using the so-called Pascal’s triangle, for the binomial 
coefficients. The triangle appears as the meru prastara, in Pingala’s Chandahsutra of 
(-3 century CE ), and another 1200 years later in the work of his 10th century CE 
commentator Halayudha.56 It was known to the Arabs and the Chinese.57 Among 
Renaissance European mathematicians it is found in the arithmetic of Apian, and in 
the work of authors like Bombelli58.  
 
(c) The Ahargana and the Julian Day-Number System 
The use of Julian day numbers is another kind of  evidence. These day numbers, used 
in scientific specification of dates,  are named, somewhat ambiguously, after Julius 
Scaliger, the father of Joseph Scaliger. Joseph Scaliger was a well-known opponent of 
Christoph Clavius, and he, too,  introduced his numbering system from 1582.   
 
Now, from at least the time of Aryabhata, all dates in Indian astronomy are specified 
in this way,  using day numbers. This eliminates any possible ambiguity due to 
calendrical differences; such ambiguities did exist because of the variety of calendars 
in use.  These day numbers are specified as Ahargana or “heap of days”. 
Understanding the first stanza of the Aryabhatiya requires us to know about this 
system; in fact, the day number system could have been transmitted by absolutely any 
Indian astronomical text.  
 
The difference between Ahargana and Julian day numbers is only this: the Ahargana 
count starts from the beginning  of the Kaliyuga,  (17 Feb -3102 CE) whereas the 
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Julian day-number count starts  from 1 Jan - 4713 CE (an astronomically convenient 
date, presumably related to the date of Biblical creation). Thus, the Ahargana differs 
from the Julian day number by exactly 588,465 which is the Julian day number for the 
start of the Kaliyuga. Of course, the system is simple enough and could have been 
invented by anyone at any time. The strange thing is that the system was allegedly 
invented in Europe at exactly the time, in 1582,  when it could have been transmitted 
through a stated earlier desire to learn about Indian calendrical techniques.  If our 
conjecture about transmission of the day-number system is true, it would seem that 
well before their conquest of Cochin, the Dutch had independent sources of 
information from India.  

(d) Planetary Models and Elliptic Orbits 
There are many other key instances that should count as circumstantial evidence. For 
example, Nilakantha’s planetary model, in the Tantrasangraha,  is exactly the 
“Tychonic” model (Tycho was a contemporary of Clavius), except that it involves 
elliptical orbits. (It is now known that Tycho’s student, Kepler, obtained his elliptical 
orbits by computing his “observations”.59) We do not go into these for reasons of 
space, since we first need to give an exposition of all the relevant planetary theories.  
 

(4) Documentary Evidence of the Role of the Jesuits 
 
The period after Vasco da Gama’s arrival in Calicut in 1498 and the establishment, 
shortly thereafter, of a Portuguese colony with bases in Cochin, Cannanore and Goa, 
by Afonso de Albuquerque in 1510, laid the foundations for Catholic missionary work 
in the Malabar coast.  
 
Among the various missions, the Jesuit one was the most important in respect of 
transmitting local knowledge to Europe. While there is a paucity of literature on this 
subject (mainly due to the, as yet, uncatalogued nature of a vast quantity of oriental 
manuscripts in Portugal), this is not the case with French missionary work.60 That the 
French Jesuits were actively engaged in the acquisition of Indian astronomy is 
reported by Otto Spies.61 Spies makes explicit reference to the Jesuit Calmette’s study 
of local astronomy. 
 
The earlier Jesuits in the Malabar Coast were interested in arithmetic, astronomy and 
timekeeping is indicated by many references in the Documenta Indica62.  Their 
interest in local science seems motivated also indirectly by their policy to master 
vernacular languages such as Malaylam and Tamil63 so much so that they were 
encouraged to speak to each other in the vernacular to progress this policy. Prominent 
Jesuits who became fluent native speakers included De Nobili who spoke Sanskrit and 
Tamil (the language spoken in Trichur) and the Portuguese Diogo Gonsalves who 
spoke Malayalam fluently. The attempt by Jesuits to learn the vernacular was so 
widespread that they frequently used Malayalam to sign their names in letters to the 
Society of Jesus headquarters in Rome.64 The rationale for learning the vernacular 
languages was to aid their work in converting the local populace to Jesuit Catholicism 
by understanding their science, culture and customs and, of course, by facilitating 
communication. The former was important for the Jesuits and this included, at the 
very least, awareness of jyotisa - de Nobili, for instance, in 1615, wrote65 a strong 
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polemic against the Vedanga Jyotisa, a work that had been discarded as obsolete by 
Varahamihira, a thousand years earlier. To formalise the policy of educating Jesuit 
workers in the local culture, ‘local’ subjects such as astrology or jyotisa were included 
in the curriculum of the Jesuit colleges in the Malabar Coast.66 The Jesuits’ study of 
the vernacular languages was not merely intended to facilitate their work in 
conversions. It was also intended to enable work on transmitting this knowledge back 
to Europe. This is supported by the acquisition of translations of Malyalam and 
Sanskrit manuscripts67. Further evidence of this knowledge acquisition is contained in 
the ARSI collections Goa 38, 46 and 58. The last being the work of Diogo Gonsalves 
and contains detailed notes on the judicial system and on the sciences and mechanical 
arts of the Malabar region. In addition the Jesuit Luis Frois who worked in the 
Malabar region is referred to in Goa 46 was active in information acquisition68. Then 
there is de Menses who, writing from Kollam in 1580, reports that, on the basis of 
local knowledge, the European maps have inaccuracies69. 
 
The arrival of Matteo Ricci in Goa in September 13, 1578, as pointed out earlier, was 
significant in respect of Jesuit acquisition of local knowledge. His specialist 
knowledge of mathematics, cosmography, astronomy and navigation made him a 
candidate for discovering the knowledge of the colonies and he had specific 
instructions to investigate the science of India. The Jesuit historian Henri Bernard 
states that Ricci  
 
“…had resided in the cities of Goa and of Cochin for more than three years and a half 
(September 13, 1578-April 15, 1582): he had been requested to apply himself to the 
scientific study of this new and imperfectly know country, in order to document his 
illustrious contemporary, Father Maffei, the ‘Titus Livius’ of Portuguese 
explorations.”70  
 
Bernard reports that Ricci had begun his task prior to arriving in India by setting about 
a study of nautical science. It is also known that Ricci had enquiries about Indian 
calendrical science; in a letter to Maffei he states that he requires the assistance of an 
“intelligent Brahmin or an honest Moor” to help him understand the local ways of 
recording and measuring time  (lit. jyotisa). 71  
 
There were other later Jesuits who report of scientific findings on such diverse things 
as calendrical sciences and inaccuracies in the European maps and mathematical 
tables. Antonio Rubino writes, in 1610, similarly about inaccuracies in European 
mathematical tables72. Then there is the letter from Schreck, in 1618, of astronomical 
observations intended for the benefit of Kepler73 - the latter had requested the eminent 
Jesuit mathematician Paul Guldin to help him to acquire astronomical knowledge 
from India to support his theories74. Further research is needed on the activities of 
these latter Jesuits as little is literature is available on this subject. 
 
Further, the Jesuits established printing presses all over the Malabar region; in 1550 in 
Goa which used Roman types, in 1577 in Vaipicota using Tamil and Malyalam types, 
in 1602 Vaipicota using Syro-Chaldic, and in 1578 in Tuticorin with Tamil types. The 
aim of these presses was to publish the catechism so essential for missionary work; for 
example, St Francis Xavier’s catechism was published in 1557 by the Goa press.  The 
aim was also to translate the local science into Portuguese prior to transmission to 
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Europe; for example, Garcia da Orta’s Colloquios dos simples e drogas he cousas 
mediçinas da India published in Goa in 156375.  There were many other publications 
of this type but they remain obscure because, as Sarton points out  “A Portuguese 
book printed in Goa could not attract much attention outside the Portuguese world.”76 
Nevertheless, subsequent Jesuits such as Schreck followed on from Garcia da Orta in 
botany77.  
 
All available evidence points out that the Jesuits were active in acquiring local 
scientific knowledge including astronomy and calendrical science. Thus they would 
have been aware of the astronomy of the Madhava school and would have sought it 
out. But how might the Jesuits have obtained key manuscripts of Indian astronomy 
such as the Tantrasangraha and the Yuktibhasa? We present a plausible conjecture. 
Such manuscripts would require the Jesuits being in close contact with scholarly 
Brahmins; there is concrete evidence that they were in contact with such people. There 
is plenty of evidence of the Jesuits being in contacts with kings across the country. We 
establish that the Jesuits had close relations with the kings of Cochin, and that the 
latter were knowledgeable about mathematics and astronomy in the tradition of 
Kerala.  
 
The kings of Cochin came from the scholarly kshatriya Varma ‘Tampuran’ family 
who were knowledgeable about the mathematical and astronomical works of medieval 
Kerala78. Rama Varma Tampuran who, in 1948 (together with A.R. Akhileswara 
Iyer),79 had published an exposition in Malayalam on the Yuktibhasa was one of the 
princes of Cochin already stated; this exposition which has been the basis of most 
subsequent work on the Yuktibhasa used the TantraSangrahaVyakhya manuscript of 
the Desa Mangalatta Mana (a Namputiri household, now disbanded). This manuscript 
was in the keeping of Rama Varma Tampuran (who belonged to that household)80.  
Moreover, various authors, from Charles Whish in the 19th century to Rajagopal and 
Rangachari have acknowledged that members of the royal household were very 
helpful in supplying these manuscripts in their possession.    
 
This suggests that the former royal family in Cochin, which was in possession of a 
large number of MSS, had not only a scholarly tradition, but also a tradition of helping 
other scholars. Thus, the royal family could itself have been a possible source of 
knowledge for the Jesuits. Indeed the Jesuits working on the Malabar Coast had close 
relations with the kings of Cochin81. Furthermore, around 1670, they were granted 
special privileges by King Rama Varma82 who, despite his misgivings about the Jesuit 
work in conversion, permitted members of his household to be converted to 
Christianity83.  The close relationship between the King of Cochin and the foreigners 
from Portugal was cemented by King Rama Varma’s appointment of a Portuguese as 
his tax collector84.  
 
Given this close relationship with the Kings of Cochin, the Jesuit desire to know 
about local knowledge, and the royal family’s contiguity to the works on Indian 
astronomy, it is quite possible that the Jesuits may have acquired the key manuscripts 
via the royal household. In addition after the 1580 annexation of Portugal by Spain 
and subsequent loss of funding from Lisbon, the rationale for transmission acquired 
another dimension, that of  profit85. Given the financial rewards for accurate 
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navigational methods the motivation for such acquisition must have been 
overwhelming. 
Conclusion 
At the beginning of this paper we proposed to take a legal view of the evidence for the 
transmission to Europe of the calculus that had developed in the works of the 
mathematicians and astronomers of the Aryabhata school between the 14th and 16th 
centuries. We established strong motivation for the transmission in the needs of 
navigation and the calendar reform., which were recognised as the most important 
scientific problems of that age in Europe. We also established that Europeans had 
ample opportunity to access the texts and calendrical almanacs in which this 
information was to be found not only in the straightforward sense that they knew the 
local languages well, but also in the sense that trained mathematicians were sent for 
the express purpose of collecting the knowledge available in these texts. The 
circumstantial evidence for transmission would appear while the work on 
documentary evidence has only just started. 
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