
VB     ELECTROMAGNETIC TIME  

ABSTRACT. In the previous chapter we saw that the introduction of the field creates more problems than it
solves. Here  we begin by disregarding the problems due to the field, and formulate the two-body problem of
retarded electrodynamics, without radiation reaction.  The resulting equations of motion are time-asymmetric,
and fail to satisfy the ‘phase-flow’ hypothesis underlying the recurrence and reversibility paradoxes. We present
a counter-example to show that the Lorentz-Dirac equation, resulting in preacceleration, may be invalid since
it is derived by replacing a retarded ordinary differential equation (o.d.e.) by a higher-order standard o.d.e.
obtained by Taylor approximation. The solutions of advanced o.d.e.’s branch into the future, implying
in-principle unpredictability from the past and resolving Popper’s pond paradox. The branching and collapse
of solutions of mixed o.d.e.’s suggests a resolution of the Wheeler-Feynman and grandfather paradoxes. 

With a direct-action theory, or with Dirac’s definition of radiation damping, the elimination of advanced
interactions is a serious problem. We present an exposition of (i) the Sommerfeld condition, pointing out its
arbitrariness; (ii) the Wheeler-Feynman absorber theory, pointing out its internal inconsistency; and (iii) the
Hogarth-Hoyle-Narlikar theory, pointing out its external inconsistency. The remaining absorber theory predicts
the existence of rare advanced interactions. We compare this with the empirical results of Partridge, and suggest
that experiment proposed by Heron and Pegg may now be revived. 

1 Introduction

CHAPTER IV ended with the hope that the introduction of the field may help to resolve
the paradoxes of thermodynamics. But in Chapter VA we saw that the introduction of

the field seems to create more problems than it solves.

Let us, for the moment, forget about the field, or else let us adopt the point of view that
the field is a dispensable intermediary between particles. Let us look, instead, at the nature
of the many-body problem (of electrodynamics), and the novel features arising from the
finite speed of interaction: to measure time, or anything else, one must postulate that the
speed of light is constant. 

What are the consequences of the finite speed of interaction? We recall Poincaré’s
remark: ‘The state of the world will depend not only on the moment just preceding, but on
much older states.’  In both cases we obtain what Poincaré called  (p  65) ‘equations of finite
differences’. As Poincaré further argued, the substance of physics lies in its mathematical
formalism — the ‘mechanical explanations’ are redundant. So, between fields and particles,
it matters little which mental picture we feel comfortable with.

How does the finiteness of the speed of interaction affect the underlying equations? To see
this, consider a system of n particles. In the field picture, an accelerated charged particle e1 gives
out retarded radiation which is incident upon other charged particles e2, e3, ..., en. The outgoing
retarded wave accelerates other charged particles at later or retarded times. In the particle picture,
only these accelerations matter: the acceleration of e1 at time t depends upon the acceleration  of
e2, e3, ..., en, at past or retarded times, say t−τ2, ..., t−τn.  Ignoring, for the moment,  the question
of self-action and radiation damping,  the difference between the field-picture and the particle-
picture does not show up mathematically. 
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2 The two-body problem of electrodynamics

2. 1 Formulation

For example, the equations of motion of two charged particles i and j, in one dimension,
interacting solely through retarded radiation (and without radiative damping) take the form:1
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where (t, z), with the appropriate subscript, denote the coordinates of the world-lines of the
particles, dots denote differentiation with respect to the proper times si, sj of the two particles,
and (i,j) = (1,2) or (2,1). Given si, the retarded proper time sj in the above equation,
corresponds to the point at which the backward null cone from the point (ti(si), zi(si)) meets
the world line of particle j. This is obtained from (see Fig. 5): 

c ti(si)−tj(sj)   =   zi(si)−zj(sj) . (2)

The difficulty of having two independent variables can be removed by rewriting (1) as
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where k  =  −e1 e2 ⁄ c2, the explicit retardations 

τji (t)  =  t − tj (sj) (2′)

are obtained from equation (2), primes denote differentiation with respect to t, and vi = z′i is
the velocity.

Reforming the notation (to use bars rather than subscripts), and using units with c = 1,
these equations may be rewritten:
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where b = −k ⁄ m, b
_
 = −k ⁄ m

__
, and
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τ(t)  =   x(t)−x
_
(t−τ) , (4a)

τ
_
(t)  =   x

_
(t)−x(t−τ

_
)  . (4b)

We can now see the difference quite clearly: the character of the differential equation
has changed. The system of equations (3) is no longer a system of simple differential
equations, but is a system of ‘difference-differential equations’ or a system of ordinary
differential equations (o.d.e.’s) with retarded deviating arguments. The ‘accelerations’ of
the particles at time t depend upon their velocities v, v

_
  at past or retarded times, t−τ, t−τ

_
.

What is the significance of this change? To study the two-body problem of
electrodynamics, one must study o.d.e.’s with deviating arguments: even the simplest
qualitative features of such o.d.e.’s completely destroy the Newtonian paradigm, and suggest
a resolution of the paradoxes of thermodynamics, and the paradoxes of advanced action.

2. 2 Some definitions 

A first-order o.d.e. has the form

x′(t) = f (t, x(t)), (5)

where f is some function (generally non-linear). It is well known that the most general system
of o.d.e.’s can be reduced to a system of such equations, i.e., to the form (5), regarding x  as
a vector, if necessary. It is also well known that (under some mild requirement of continuity
on f) prescription of the ‘initial value’ x(0), at an instant t = 0, determines a unique solution
x(t) of (5) in a neighbourhood [−δ, δ] of  t = 0. This is the Newtonian paradigm.

In contrast, a differential equation with deviating arguments has the form

x′  =  f (t, x(t), x(t−τ) ). (7)

The ‘dependent variable’, the function x, appears for more than one value of its argument,
the ‘independent variable’, t.

An equation with deviating arguments is classified as retarded, or history dependent, if
the highest order derivative of the unknown function appears for exactly one value of the
argument, and this argument is not less than all the arguments of the unknown function and
its derivatives appearing in the equation. For example,

x′(t)  =  f (t, x(t), x(t−τ(t)) ) (8) 

is called retarded if τ(t)>0. 
Similarly, the equations of motion of charged particles interacting solely through

advanced radiation correspond to anticipatory behaviour, or an o.d.e. with advanced
deviating arguments, 

x′(t)  =  f (t, x(t), x(t+τ(t))). (8)
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The definition requires the same proviso as above, except that now the argument of the
highest order derivative must be less than or equal to all the other arguments of the unknown
function, i.e., τ(t)>0 in (8), or τ(t)<0 in (7).

More generally, a system of charged particles interacting through both advanced and
retarded radiation displays partly anticipatory behavior, corresponding to an o.d.e. with
mixed-type deviating arguments: 

x′(t)  =  f (t, x(t), x(t−τ1(t)), x(t+τ2(t))). (9)

From now on, equations of the type (7), (8), and (9) will be referred to as retarded,
advanced, and mixed-type o.d.e.’s. The mathematical theory of such differential equations
with deviating arguments, also known as functional differential equations, differs from the
mathematical theory of the usual differential equations.

2. 3 The recurrence paradox and the past-value problem

Van Dam and Wigner2 considered equations involving both retarded and advanced fields.
They asserted (without proof) that instantaneous positions and velocities were sufficient to
determine unique trajectories. 

Now, with electromagnetic interactions taken into account, the many-body equations
of motion (3) are retarded o.d.e.’s.  However, for the simplest model of even a retarded
differential equation, modeling a history-dependent situation, it is inadequate, in general, to
provide initial data at a point. Consider, for instance, the o.d.e with constant retardation
π ⁄ 2, 

x′(t)  =  x(t−π
2

),   t ≥ 0 .
(10)

To obtain a unique solution, it is insufficient to specify only the state at one point of time,
say x(0). Thus, x = cos t and x = sin t are obvious solutions, and since the equation is linear
x = a⋅cos t + b⋅sin t is a solution for arbitrary constants a and b, and both a and b cannot be
determined from a knowledge of x(0).

Since the behavior is history-dependent, it is more reasonable to ask for a unique solution
after prescribing the past history, i.e., an initial function x = ϕ, over the relevant part of the
past: the interval of retardation, [-π/2, 0]. 

In general, a unique solution of the past-value problem for the retarded system, 

x′(t)  =  f (t, x ( t−τ1(t), t−τ2(t), ..., t−τn(t)) ), (11)

may be obtained under the following sufficient conditions.3 (i) All delays, τi, are bounded,
and (ii) some technical conditions such as a local Lipshitz condition and a continuity
condition are satisfied.

From the point of view of thermodynamics, the interesting conclusion is the following.
The hypotheses underlying the recurrence paradox have been destroyed: there is no longer
a unique trajectory through each point of phase space. More than one trajectory may pass
through each point of phase space; trajectories may intersect (Fig. 1).  
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2. 4 The reversibility paradox: time asymmetry of delay 

For retarded o.d.e.’s the intersection of trajectories takes place preferentially towards the
future, in a way that destroys the hypothesis underlying the reversibility paradox. An
ordinary differential equation is time symmetric: it may be solved either forward or backward
in time. From a knowledge of the current values, Newton’s laws may be used to predict the
future or retrodict the past. However, a retarded o.d.e. relates past causes to current effects.
Such an equation may be solved forward in time, but not, in general, backwards in time. 

Consider the following ordinary, linear, retarded differential equation with constant
coefficients, and constant retardation r:

x′(t)  =  a x(t) + b x(t−r), (12)

with b different from zero and r>0. To solve the equation backwards, it is only necessary to
solve an algebraic equation,

x(t−r)  =  
x′(t)−a x(t)

b
, (13)

to obtain the solution on [t−2r, t−r], given x = ϕ on [-r, 0]. For nonlinear equations, this
already means that backwards solutions will not be unique. For the case under consideration,
suppose a≠−b and we prescribe ϕ(t) ≡ k, a constant, on [-r, 0], and ask for a backwards
solution for t ≤ 0. Then (13) implies that  x(t) = −ak ⁄ b  so that the unique solution of the
algebraic equation (13) fails to be continuous, and hence differentiable. Therefore, a
(continuous) backwards solution of (12) does not exist in general.

Of course, one could think of choosing a final function in such a way that the solution
exists. But then the solution would, in general, fail to be unique. Consider

x′(t)  =  b(t) x(t−1), (14)

where b is any sufficiently smooth (e.g. continuous) function which vanishes outside [0, 1],
and with 

Fig. 1: Effects of
history-dependence

Three solutions of a model first-
order delay equation, showing the
effects of history-dependence. All
three solutions have the same ini-
tial value x(0), though the past his-
tories prescribed over the
time-interval  [-1, 0] are different.
Note also the discontinuity in the
derivative of solution 1, visible at
t=0.
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∫ b(t) dt  =  −1. (15)

For example, 

 b(t)  =  










0
−1 + cos 2πt

0
     

 t ≤0,
 0 ≤ t ≤1,

 t ≥1.

  (16)

For t ≤ 0, (14) reduces to x′(t) = 0 so that, for t ≤ 0, x(t) = k for some constant k. Now if
k is any constant then, for t ∈  [0,1],

x(t)  =  x(0) + ∫  
0

t
x′(s) ds

 

=  x(0) + ∫  
0

t
 b(s) x(s−1) ds

 

=  x(0) + x(0) ∫  
0

t
 b(s) ds, 

 (17)

since x(s−1) ≡ k = x(0) on [-1, 0]. Hence, using (15), x(1) = 0 no matter what k was. But
x(1) = 0, and b(t) = 0 for t ≥ 1, implies, by (14), that x(t) = 0 for all t ≥ 1. Consequently, (14)
does not admit a unique backwards solution even if we prescribe future data for all future
times t ≥ 1. Thus, if ϕ differs from 0 on [1,∞) there are no backward solutions. But, if
ϕ ≡ 0 on [1, ∞), the solutions branch into the past (Fig. 2), and there is no way to pick a unique
solution from the infinity of continuous solutions that are available.

Fig 2: Time asymmetry of delay

Three solutions of the retarded
equation (14) which collapse
towards the future. The different
past histories, presecribed over the
time-interval [1,0], all result in the
same future solution for t≥1.
Retrodiction is hence impossible
from future data prescribed over t
≥ 1. Teleological ‘explanations’
are impossible with history-de-
pendent evolution.
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2. 5 Preacceleration: the Taylor-series approximation

We saw in Chapter VA that the study of radiative damping and, in particular, the Schott
term, leads to equations that are of the third order in time, resulting in the  preacceleration
of the electron. Dirac, in 1938, obtained these equations by means of a Taylor expansion
which seems unavoidable.4 Many other authors5 have attempted similar approximation
procedures, using a Taylor series expansion to get rid of retarded/advanced expressions, in
dealing with the two-body problem in electrodynamics and gravitation. Physically, this
procedure means that we model a history-dependent system by an instantaneous system with
additional degrees of freedom.

This procedure is known to be, in general, invalid. This may be seen from the following
counter-example,

x′(t)  =  −2 x(t) + x(t−r), (18)

where r>0 is a small constant. Every solution of this equation is bounded6 and tends to zero
as t→∞. But if we choose the Taylor series approximation to the right hand side and truncate
after two terms, we obtain 

x′(t)  =  −2 x(t) + [x(t)−rx′(t) + 
1
2

 r2x′′( t)] , (19)

which admits exponentially increasing solutions x(t) = c exp(αt), with α > 0. Thus, the
Taylor approximation of (18) by (19) leads to qualitatively incorrect behaviour, no matter
how small r is, so long as r>0.

It may be shown that it is not the order of the approximation which is at fault: with
instantaneous data, even an infinite number of degrees of freedom is inadequate. The order
of the approximation does, however, make a difference from the numerical point of view,
as pointed out by El’sgol’ts,7 ‘since the transition is equivalent to the rejection of the term
with the highest order derivative in an unstable-type differential equation with a small
coefficient before the highest derivative.’[Emphasis mine] 

In the usual treatment of the numerical solution of retarded o.d.e.’s, attention is focused
upon the discontinuities that might arise at the ends of delay intervals (e.g. Solution 1 of Fig.
1). However, one would expect the general electrodynamic many-body problem to be ‘stiff’:
there could be oscillations at widely varying frequencies. In view of the Dahlquist barrier,8
A-stability fails for any rule higher than the trapezoidal rule, so that the Taylor approximation
could be numerically misleading for derivatives of order greater than two.9 Thus, Dirac was
perhaps right in a way when he rejected the higher order terms as too complex to apply to
‘a simple thing like the electron’.

To summarize, the origin of the  Schott term in the Lorentz-Dirac equation of motion
is mathematically dubious, and can result in qualitatively incorrect behaviour, though it may
yet provide a more robust numerical approximation than would be obtained by the inclusion
of higher-order relativistically covariant terms. The alternatives that have been proposed,10

to the Lorentz-Dirac equation, have not proved satisfactory.11
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VIB     QUANTUM-MECHANICAL TIME 

ABSTRACT. We present a brief exposition of the orthodox axiomatic approach to q.m., indicating the relation
to the text-book approach. We explain why the usual axioms force a change of logic. We then explain the
attempts to derive the Hilbert space and the probability interpretation from a new type of ‘and’ and ‘or’ or a
new type of ‘if’ and ‘not’. Included are the Birkhoff-von Neumann, Jauch-Piron, and quantum logic approaches,
together with an account of their physical and mathematical obscurities. 

Instead of entering the labyrinth of subsequent developments, which seek new algebraic structures while
accepting the old physical motivation, we present an exposition of the structured-time interpretation of q.m.,
which seeks a new physical motivation.

We saw in Chapter VB that, with a tilt in the arrow of time, the solutions of the many-body equations of motion
are intrinsically non-unique. In Chapter VIA we had indicated how this non-uniqueness relates to a change in
the logic of time. We now explain how the resulting changes in the logic and  structure of time lead to a new
type of ‘if’ and ‘not’, of the kind required by q.m.,  while escaping from the criticism which applies to the
earlier ‘quantum logic’ approaches. 

We briefly indicate the analogy between this logic and the temporal logic required for the formal semantics of
parallel-processing languages like OCCAM, and distinguish the structured-time interpretation from the
superficially similar many-worlds interpretation and the transactional interpretation of q.m.

1 Introduction

THE preceding chapter introduced the problem of a non-trivial structure of time: the
(local) topology of time, in the real world, might be different from that of the real line.

The real-line topology differs from the mundane view of a past-linear future-branching time,
used to demarcate and validate physics. Moreover, there is possible incoherence about the
structure of time, even within physics, as different structures may be simultaneously implicit.

We explained how the notion of a structure of time could be formalized in terms of
properties of the earlier-later relation (U-calculus) or, more generally, using an appropriate
(temporal) logic. 

This chapter deals with two earlier claims (a) that an appropriately structured time could
be related to the change of logic required by the axiomatic formulation of q.m., and (b) that
the hypothesis of a tilt in the arrow of time implies such an appropriate structure. The other
consequence of the basic hypothesis, viz. non-locality,  is hardly a serious drawback since
we saw in Chapter VIA that locality is a fuzzy and metaphysical requirement which lacks a
basis even in classical physics. 

To reiterate, the aim of this chapter is to present an exposition of the structured-time
interpretation of q.m. which relates the many-body equations of motion of non-local classical
(relativistic) mechanics, the emergence of a logical structure, or a non-trivial topology of
time,1 and the mathematical formalism of q.m.

§ 2 presents an exposition of the orthodox Hilbert-space axiomatics of q.m. and relates
it to the usual textbook approach. § 3 explains why the orthodox axiomatic approach forces
a change of logic and goes on to  present an exposition of the ‘quantum logic’ approach, its
relation to the Hilbert-space axiomatics, and its obscurities. The idea is to distill the body of
q.m. to its algebraic and logical ‘skeleton’. Finally, § 4 presents the structured-time approach,




