• Number of decimal places of precision has reduced!
 We supplied a value correct to 12 decimal places
• The output is correct only to 6 decimal places, and
 the sixth digit is wrong.
• How did this happen?

Floating-point Numbers

- Any float (real number) can be written as
 \[r = s \times M \times B^{e-E} \]

 - \(s \) = sign
 - \(M \) = mantissa
 - \(B \) = base
 - \(e \) = exponent
 - \(E \) = bias
The choice of mantissa and exponent is not unique.

If \(r = 0.234 \), \(r \) can be written as

\[
0.234 \\
0.000234 \times 10^3 \\
23.4 \times 10^{-2}
\]

etc.

Floats: IEEE representation

- In computers, usually \(B = 2 \).
- For \(B = 2 \), the mantissa is normalised if it is written in the form

\[
1.f \\
\text{where } 0 \leq f < 1
\]

- The exponent, too, is represented in binary.
- A float corresponds to 4 bytes = 32 bits. Thus, the declaration
float radius;

- reserves 32 bits of space in the computer memory.

- According to the IEEE floating point standard 754 of 1985 these bits are distributed as follows.

 * \(s \) eeeeeee ffffffffffffffffffffffffff
 * (1) (8) (23)

Floats: IEEE representation

- Using these 32 bits, the floating point number is recovered as follows,
 - according to the IEEE specification 754 of 1985.

- (a) Treat the sign bit as an integer \(s \) such that \(0 \leq s \leq 1 \).

- (b) Treat the 8 exponent bits as the bits of the binary representation of an integer \(e \) such that \(0 \leq e \leq 255 \)
 - Thus, if the bits are designated by \(e_i \), then
 \[
 e = \sum_{i=0}^{7} e_i 2^i
 \]
• (c) Treat the 23 fraction bits as the bits in the binary representation of a fraction, \(f \), such that \(0 \leq f < 1 \).

 Thus, if these bits are designated by \(f_i \) then

 \[f = \sum_{i=1}^{23} f_i \cdot 2^{-i} \]

• (d) The bias is 127.

• (e) The number \(V \) represented by these 32 bits is now

 \[V = (-1)^s \times 2^{e-127} \times 1.f \]

 where \(1.f \) is the number obtained by prefixing \(f \) with an implicit leading 1, and is the same as \(1.f \).

Other cases

• The above rule applies only for the case, where

 (1) \(0 < e < 255 \) and \(f \neq 0 \).

 The remaining special cases are as follows.

 (2) If \(e = 255 \), \(f = 0 \), \(s = 0 \), then \(V = \text{INF} \)

 (3) If \(e = 255 \), \(f = 0 \), \(s = 1 \), then \(V = -\text{INF} \)

 (4) If \(e = 255 \), \(f \neq 0 \), \(s = 1 \), then \(V = \text{NaN} \) (Not a number)

 (5) If \(e = 0 \), \(f = 0 \), \(s = 0 \), then \(V = 0 \) (zero).
(6) \(e=0, f=0, s=1\), then \(V = 0.0\).

(7) If \(e=0, f\neq 0\), then \(V = (-1)^e \times 2^{s-126} \times 0.f\) is a non-normalised number, where \(0.f\) is the same as \(f\).

Examples

0 00000000 000000000000000000000000 = 0
1 00000000 000000000000000000000000 = -0

0 11111111 000000000000000000000000 = INF
1 11111111 000000000000000000000000 = -INF

0 11111111 000100000000000000000000 = NaN
1 11111111 001000000000001000000000 = NaN

0 01111111 100000000000000000000000 =
\((-1)^0 \times 2^{127-127} \times 1.1 = 1 + \frac{1}{2} = 1.5\)
1 10000000 000000000000000000000000 =
\((-1)^1 \times 2^{128-127} \times 1.0 = -2\)
• Conversely, to convert a float, such as 2.5, to a bit pattern, according to IEEE specifications, we proceed as follows.

• First convert the number into its binary representation.
 \[2.5 = 10.1 = 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} \]

• Next, convert this to the mantissa-exponent form with a normalized mantissa.
 \[10.1 = 1.01 \times 2^1 \]

• Next, rewrite this as
 \[(-1)^s \times 2^{e-127} \times 1.f \]

Comparing the two expressions, we see that
\[s = 0, \quad e = 128, \quad f = 0.1 \]

and the corresponding bit patterns are
\[s = 0 \]
\[e = 1000 0000 \]
\[f = 1000 0000 0000 0000 0000 0000, \]
so that
\[2.5 = 0 1000 0000 1000 0000 0000 0000 0000 0000 0000 0000 \]
Maximum and minimum floating point values

- The maximum floating point value is thus,

\[
0 \ 1111 \ 1110 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111
\]

= \text{MAXFLOAT}

- The above bit pattern can be written more compactly, using hex as

\[
7F\text{7FFFFF}
\]

- To what number does this correspond?

We see that

\[
s = 0
\]

\[
e = 254
\]

\[
f = \frac{1}{2} + \frac{1}{2^2} + \ldots + \frac{1}{2^{23}}
\]

\[
= \frac{1}{2} \cdot \frac{1 - 2^{-23}}{1/2} = 1 - 2^{-23}
\]

- Thus, MAXFLOAT = \(2^{127} \times (1 + 1 - 2^{-23})\)
• We can now calculate the value of MAXFLOAT using logarithms.

• If
 \[\log_{10} 2 = x \]

 then
 \[2 = 10^x \]

• Hence,
 \[2^y = (10^x)^y = 10^{xy} \]

• Putting in the values
 \[x = \log_{10} 2 = 0.3010 \]

• For \(y = 127 \), we have \(xy = 38.227 \)
 Thus, \(2^{127} = 10^{38.227} \)

• Similarly, for \(y = -23 \), we have \(xy = -6.923 \)
 Thus, \(2^{-23} = 10^{-6.923} \)

• Thus, \(f = 1 - 2^{-23} = 1 - 10^{-7} = 0.9999999 \)
• Putting it all together,

\[
\text{MAXFLOAT} = 10^{38} \times 10^{0.227} \times 1.9999999
\]

\[
= 10^{38} \times 1.687 \times 1.9999999
\]

\[
= 3.37 \times 10^{38}
\]

• We can check this out with a small program.

Floats: maximum and minimum

Program 5

/*Program name: MaxMin.c
Function: To show the maximum and minimum floating point values */

#include <stdio.h>
#include <conio.h>
#include <values.h>
main()
{
 float a, b;
 a = MAXFLOAT;
 b = MINFLOAT;
 system ("cls");
}
printf ("\nMaximum floating point value =\n %e", a);
printf ("\n\n\nMinimum floating point value\n = %e", b);
getch();
return 0;
}

• Output:

Maximum floating point value = 3.37000E+38
Minimum floating point value = 8.43000E-37

Minimum normal floating point value

• For the minimum floating point value, the above program gives the output
 - MINFLOAT = 8.43E-37

• According to the IEEE standard, the min floating point value corresponds to the bit pattern

0 00000001 00000000000000000000000000000000
= 2\(^{-126}\) \times 10\(^{-37.926}\) =
10\(^{-37.926}\) = 10\(^{-38} \times 10^{0.074}\) = 1.18\times10^{-38}
The discrepancy

- Thus, the program output is:

 MINFLOAT = 8.43E-37

- The calculation, using the IEEE standard is

 MINFLOAT = 1.18E-38

- 8.4E-37 ≠ 1.18E-38

- $8.43 \times 10^{-37} \neq 1.18 \times 10^{-38}$

Q. Can you explain the discrepancy?
A Turbo C Bug

- $10^{37} \cdot 10^{3.926} = 8.43 \cdot 10^{-37}$

- This is the value given in TURBO C. But the preceding step involves a mistake. The correct value would be, as we calculated.

$$10^{37.926} = 10^{-38} \cdot 10^{0.074} = 1.18 \times 10^{-38}$$

- The exact value is $1.17549421 \times 10^{-38}$, on UNIX systems.

Moral

- The machine is NOT always right!
- All programs have bugs.
- IDE’s are programs.
- Hence, the Turbo C IDE also has bugs.
- Don’t trust it blindly!
- Good programming requires a clear understanding of what is going on.
A doubt

- While calculating MINFLOAT we used the bit pattern

\[
\text{MINFLOAT} = \\
0 \ 00000001 \ 00000000000000000000000
\]

- But clearly, the following bit pattern

\[
0 \ 00000000 \ 000000000000000000000001
\]

 - corresponds to a smaller number

- Is something wrong here?

Smaller than the smallest is not normal

- Recollect the IEEE specification Rule (7).

 (7) If \(e=0, f=0 \), then \(V = (-1)^e \times 2^{-126} \times 0.f \)

 - (non-normalised number), where \(0.f \) is the same as \(f \).

- MINFLOAT is NOT the smallest floating point value.

- MINFLOAT is only the smallest NORMAL floating point value.
Smaller values CAN be represented, but they are called subnormal, or non-normal.

Minimum subnormal floating point value

- Minimum subnormal float is

\[0 00000000 00000000000000000000001 \]
\[= 1 \times 2^{-126}, 0.00000000000000000000001 \]
\[= 1 \times 2^{-126} \times 2^{-23} \]
\[= 2^{-149} \approx 1.415 \times 10^{-45} \]

- This is smallest value for any float in a C program.
Summary

- MAXFLOAT ≈ 3.37E38
 - Numbers larger than MAXFLOAT correspond to INF.
 - Negative numbers smaller than MAXFLOAT correspond to -INF.

- MINFLOAT = 1.18E-38
 - Positive numbers smaller than MINFLOAT actually CAN be represented in a C program.
 - But these numbers are called subnormal.

- The minimum subnormal number = 1.4E-45.
Checking it out

• What happens if we use floats outside this range?

• We can check this out with a small program.

/*Program name: infinity.c
Function: To check what happens when we use
numbers outside the range of MAXFLOAT and
MINFLOAT*/
#include <stdio.h>
#include <conio.h>
#include <values.h>
main()
{
 float a, b, c;

 a = MAXFLOAT;
 b = MINFLOAT;
 printf ("\nMax = %e, \nMin= %e", a, b);
 getch();
/*Now try putting in values of a, and b,
larger than MAXFLOAT or values of b smaller
than MINFLOAT */
 printf ("\n\n Enter a = ");
 scanf ("%f", &a);
 printf ("a = %e", a);
 printf ("\n Enter b = ");
 scanf ("%f", &b);
 printf ("\n b = %e
", b);
 c = a/b;
 printf ("%e/%e = %e", a, b, c);
 getch(); return 0; }
Significant figures

- If the float data type can be used to represent numbers as small as \(10^{-38}\) or \(10^{-45}\), then why can’t the computer print the value of \(\pi\) correct to 45 (or 38) decimal places?

\[
10^{-45} = 0.001
\]

(44 zeros after the decimal point)

- NOTE: The number \(\pi\) is NOT \(\frac{22}{7}\) or 3.14.

\[
\pi = 3.141592658979323846243383279502884197169399
\]

(accurate to 45 decimal places)
Solving the puzzle

- Smallest representable number depends upon the exponent,

 BUT

- Accuracy of a calculation depends upon the mantissa.

Decimal places of precision

- According to the IEEE specifications, 23 bits are available to represent the mantissa.
- To how many decimal places does this correspond?
Converting bits to decimals

- We can convert bits to decimal places, as before, using \(\log_{10}2 = 0.3010 \).
- Thus, 23 bits corresponds to

 \[
 23 \times 0.3010 = 6.923
 \]

 or about 7 decimal places of precision.
- Thus, \(1.023 \times 10^{-7} = 1.0 \times 10^{-7} \) on a computer.
- Conclusion: The simplest floating point calculation using C on a computer cannot be accurate to more than 6 or 7 decimal places.

Rounding

- Without going into the finer points here, we can see that
- the error INCREASES with each operation with floats.
 - such as addition or multiplication
- Hence, in the Area.c program the value of \(\pi \) was rounded off to 5 decimal places.
Understanding the solution

- How does the computer add two numbers with a different exponents?
- It first makes the two exponents equal: the exponent of the smaller number is made equal to that of the larger number.
- In the process the mantissa must be bit shifted.

Significant figures (contd)

- Thus, to get
 \[1 + \varepsilon \]
 where \(\varepsilon = 1 \times 10^{-6} \),

 the computer first represents both to the same exponent,
 \[1 = 1 \times 10^0 \]
 \[\varepsilon = 0.000001 \times 10^0 \]

 and then adds the mantissae

 \[1 + \varepsilon = 1.000001 \times 10^0 \]
Bit shifting

- That is,
 - Step 1: Make the two exponents equal.
 - Step 2: Adjust the mantissa of the smaller number.

- (Naturally, the preference is to adjust the smaller number.)

- In binary representation, the mantissa is adjusted by bit shifting.

Example

- To perform $1.5 + 64$
 - Above numbers are in decimal representation.

- In binary representation
 \[\begin{align*}
 1.5 &= 1.1 \times 2^0 \\
 64 &= 1.0 \times 2^6
 \end{align*} \]

- Thus, the number 1.5 must be adjusted, and written as
 \[1.1 \times 2^0 = 0.0000011 \times 2^6 \]

- The original mantissa corresponded to the bit pattern
 \[f = 1000 0000 0000 0000 0000 0000 0000 0000 \]
• After adjusting the exponent, the new mantissa corresponds to the bit pattern
 \[f = 0000 \ 0110 \ 0000 \ 0000 \ 0000 \ 000 \]
• The bits in the mantissa have been shifted to the right.

• Q. What happens if the original mantissa was
 \[f = 1000 \ 0000 \ 0000 \ 0000 \ 0000 \ 001 \]
• A. The tail end bit disappears when the mantissa is bit shifted.

• There are only 23 bits in the mantissa.

• Q. What happens if we have to shift by more than 23 bits?
• A. If we have to shift the mantissa of a float by more than 23 bits, the entire mantissa disappears!

Summary

• When two numbers with unequal exponents are added, the mantissa of the smaller number is bit shifted to the right.

• In this process, the tail bits of the mantissa disappear.

• Since a float has only 23 bits for the mantissa, if the mantissa has to be shifted by more than 23 bits, the entire mantissa disappears.

• 23 bits corresponds to about 7 decimal places.
• **Conclusion:** if the exponent of two floats differs by more than 7 decimal places, then adding the two floats gives the larger float.

• That is, if

\[\varepsilon = 10^{-7} \]

• then

\[1 + \varepsilon = 1 \]

• That is, relatively insignificant quantities are discarded or “zeroed” in the process of a calculation.

Historical note

• As stated earlier, the term “algorithm” comes from the Latin name Algorismus of Al Khwarizmi,
 - a 9th c. Arab scholar who translated the works of Brahmagupta etc.

• These arithmetic techniques were imported into Europe, beginning with Pope Sylvester from the 10th. century.

• These algorismus techniques competed with the abacus techniques in Europe for FIVE centuries.