
• Number of decimal places of precision has reduced!

We supplied a value correct to 12 decimal places

• The output is correct only to 6 decimal places, and
the sixth digit is wrong.

• How did this happen?

CKR Class Notes in C 89

Floats: Mantissa-exponent representation

• Any float (real number) can be written as

r s M Be E

s = sign

M = mantissa

B = base

e = exponent

E = bias

CKR Class Notes in C 90

• The choice of mantissa and exponent is not unique.

• If r = 0.234, r can be written as

0.234
0.000234 103

23.4 10 2

etc.

CKR Class Notes in C 91

Floats: IEEE representation

• In computers, usually B = 2.

• For B = 2, the mantissa is normalised if it is written in
the form

1.f
where 0 f 1

• The exponent, too, is represented in binary.

• A float corresponds to 4 bytes = 32 bits. Thus, the
declaration

CKR Class Notes in C 92

float radius;

• reserves 32 bits of space in the computer memory.

• According to the IEEE floating point standard 754 of
1985 these bits are distributed as follows.

s eeeeeeee ffffffffffffffffffffffff
(1) (8) (23)

CKR Class Notes in C 93

Floats: IEEE representation

• Using these 32 bits, the floating point number is
recovered as follows,

– according to the IEEE specification 754 of 1985.

• (a) Treat the sign bit as an integer s such that 0 s 1.

• (b) Treat the 8 exponent bits as the bits of the binary
representation of an integer e such that 0 e 255

– Thus, if the bits are designated by ei, then

e
i 0

7

ei 2
i

CKR Class Notes in C 94

• (c) Treat the 23 fraction bits as the bits in the binary
representation of a fraction, f, such that 0 f 1.

– Thus, if these bits are designated by fi then

f
i 1

23

fi 2
i

• (d) The bias is 127.

• (e) The number V represented by these 32 bits is now

V 1 s 2e 127 1.f

– where 1.f is the number obtained by prefixing f with
an implicit leading 1, and is the same as 1 f .

CKR Class Notes in C 95

Other cases

• The above rule applies only for the case, where

• (1) 0 e 255 and f 0.

• The remaining special cases are as follows.

• (2) If e 255, f 0, s 0, then V INF

• (3) If e 255, f 0, s 1, then V INF

• (4) If e 255, f 0, then V NaN (Not a number)

• (5) If e 0, f 0, s 0, then V 0 (zero).

CKR Class Notes in C 96

• (6) e 0, f 0, s 1, then V 0.

• (7) If e 0, f 0, then V 1 s 2e 126 0.f

– (non-normalised number), where 0.f is the same as
f.

CKR Class Notes in C 97

Examples

0 00000000 00000000000000000000000 = 0
1 00000000 00000000000000000000000 = 0

0 11111111 00000000000000000000000 = INF
1 11111111 00000000000000000000000 = INF

0 11111111 00010000000000000000000 = NaN
1 11111111 00100000000000100000000 = NaN

0 01111111 10000000000000000000000 =
1 0 2127 127 1.1 1 1 2 1.5

1 10000000 00000000000000000000000 =
1 1 2128 127 1.0 2

CKR Class Notes in C 98

• Conversely, to convert a float, such as 2.5, to a bit
pattern, according to IEEE specifications, we
proceed as follows.

• First convert the number into its binary
representation.
2.5 10.1 1 21 0 20 1 2 1

• Next, convert this to the mantissa-exponent form
with a normalized mantissa.
10.1 1.01 21

• Next, rewrite this as
1 s 2e 127 1.f

CKR Class Notes in C 99

• Comparing the two expressions, we see that
s 0, e 128, f 0.1

• and the corresponding bit patterns are

s = 0

e = 1000 0000

f = 1000 0000 0000 0000 0000 000,

so that

2.5 = 0 1000 0000 1000 0000 0000 0000 0000 000

CKR Class Notes in C 100

Maximum and minimum floating point values

• The maximum floating point value is thus,

0 1111 1110 1111 1111 1111 1111 1111 111

= MAXFLOAT

• The above bit pattern can be written more compactly,
using hex as

7F7FFFFF

• To what number does this correspond?

CKR Class Notes in C 101

• We see that

s = 0

e = 254

f 1
2

1
22 … 1

223

1 2
1 2 23

1 2
 1 2 23

• Thus, MAXFLOAT = 2127 1 1 2 23

CKR Class Notes in C 102

• We can now calculate the value of MAXFLOAT using
logarithms.

• If
log10 2 x

then
2 10x

• Hence,
2y 10x y 10xy

CKR Class Notes in C 103

• Putting in the values

x log10 2 0.3010

• For y 127, we have xy 38.227

Thus, 2127 1038.227

• Similarly, for y 23, we have xy 6.923

Thus, 2 23 10 6.923

• Thus, f 1 2 23 1 10 7 0.9999999

CKR Class Notes in C 104

• Putting it all together,

MAXFLOAT = 1038 100.227 1.9999999

 1038 1.687 1.9999999

 3.37 1038

• We can check this out with a small program.

CKR Class Notes in C 105

Floats: maximum and minimum

Program 5

/*Program name: MaxMin.c
Function: To show the maximum and minimum
floating point values */

#include <stdio.h>
#include <conio.h>
#include <values.h>
main()
{
float a, b;
a = MAXFLOAT;
b = MINFLOAT;
system (“cls”);

CKR Class Notes in C 106

printf (“\nMaximum floating point value =”
“%e”, a);

printf (“\n\n\nMinimum floating point value”
“= %e”, b);

getch();
return 0;

}

• Output:

Maximum floating point value = 3.37000E+38

Minimum floating point value = 8.43000E-37

CKR Class Notes in C 107

Minimum normal floating point value

• For the minimum floating point value, the above
program gives the output

– MINFLOAT = 8.43E-37

• According to the IEEE standard, the min floating
point value corresponds to the bit pattern

0 00000001 00000000000000000000000

= 2 126= 10 37.926 =
10 37.926 10 38 100.074 1.18 10 38

CKR Class Notes in C 108

The discrepancy

• Thus, the program output is:

MINFLOAT = 8.43E-37

• The calculation, using the IEEE standard is

MINFLOAT = 1.18E-38

• 8.4E-37 1.18E-38

• 8.43 10 37 1.18 10 38

CKR Class Notes in C 109

• Q. Can you explain the discrepancy?

CKR Class Notes in C 110

A Turbo C Bug

• 10 37 100.926 8.43E 37??

• This is the value given in TURBO C. But the
preceding step involves a mistake. The correct value
would be, as we calculated.

10 37.926 10 38 100.074 1.18 10 38

• The exact value is 1.17549421E-38, on UNIX systems.

CKR Class Notes in C 111

Moral

• The machine is NOT always right!

• All programs have bugs.

• IDE’s are programs.

• Hence, the Turbo C IDE also has bugs.

• Don’t trust it blindly!

• Good programming requires a clear understanding
of what is going on.

CKR Class Notes in C 112

A doubt

• While calculating MINFLOAT we used the bit pattern

MINFLOAT =
0 00000001 00000000000000000000000

• But clearly, the following bit pattern

0 00000000 00000000000000000000001

– corresponds to a smaller number

• Is something wrong here?

CKR Class Notes in C 113

Smaller than the smallest is not normal

• Recollect the IEEE specification Rule (7).

• (7) If e 0, f 0, then V 1 s 2e 126 0.f

– (non-normalised number), where 0.f is the same as
f.

• MINFLOAT is NOT the smallest floating point value.

• MINFLOAT is only the smallest NORMAL floating
point value.

CKR Class Notes in C 114

• Smaller values CAN be represented, but they are
called subnormal, or non-normal.

CKR Class Notes in C 115

Minimum subnormal floating point value

• Minimum subnormal float is

0 00000000 00000000000000000000001

= 1 2 126 0.00000000000000000000001

= 1 2 126 2 23

= 2 149 1.415 10 45

• This is smallest value for any float in a C program.

CKR Class Notes in C 116

Summary

• MAXFLOAT 3.37E38

– numbers larger than MAXFLOAT correspond to INF.

– Negative numbers smaller than MAXFLOAT
correspond to INF

• MINFLOAT 1.18E-38

– Positive numbers smaller than MINFLOAT actually
CAN be represented in a C program.

– But these numbers are called subnormal

CKR Class Notes in C 117

• The minimum subnormal number 1.4E-45.

CKR Class Notes in C 118

Checking it out

• What happens if we use floats outside this range?

• We can check this out with a small program.

/*Program name: infinity.c
Function: To check what happens when we use
numbers outside the range of MAXFLOAT and
MINFLOAT*/
#include <stdio.h>
#include <conio.h>
#include <values.h>
main()
{
float a, b, c;

CKR Class Notes in C 119

a = MAXFLOAT;
b = MINFLOAT;
printf (“\nMax = %e, \n Min= %e”, a, b);
getch();

/*Now try putting in values of a, and b,
larger than MAXFLOAT or values of b smaller
than MINFLOAT */
printf (“\n\n Enter a = ”);
scanf(“%f”, &a);
printf (“a = %e”, a);
printf (“\n Enter b = ”);
scanf (“%f”, &b);
printf (“\n b = %e \n”, b);
c = a/b;
printf (“%e/%e = %e”, a, b, c);
getch(); return 0; }

CKR Class Notes in C 120

Significant figures

• If the float data type can be used to represent
numbers as small as 10 38 or 10 45, then why can’t
the computer print the value of correct to 45 (or 38)
decimal places?

CKR Class Notes in C 121

• 10 45 =

0.001

(44 zeros after the decimal point)

• NOTE: The number is NOT 22
7

or 3.14.

•

3.141592658979323846243383279502884197169399

(accurate to 45 decimal places)

CKR Class Notes in C 122

Solving the puzzle

• Smallest representable number depends upon the
exponent,

BUT

• accuracy of a calculation depends upon the
mantissa.

CKR Class Notes in C 123

Decimal places of precision

• According to the IEEE specifications, 23 bits are
available to represent the mantissa.

• To how many decimal places does this correspond?

CKR Class Notes in C 124

Converting bits to decimals

• We can convert bits to decimal places, as before,
using log102 0.3010

• Thus, 23 bits corresponds to

23 0.3010 6.923

or about 7 decimal places of precision.

• Thus, 1.023 10 7 1.0 10 7 on a computer.

• Conclusion: The simplest floating point calculation using
C on a computer cannot be accurate to more than 6 or 7
decimal places.

CKR Class Notes in C 125

Rounding

• Without going into the finer points here, we can see
that

• the error INCREASES with each operation with floats.

– such as addition or multiplication

• Hence, in the Area.c program the value of was
rounded off to 5 decimal places.

CKR Class Notes in C 126

Understanding the solution

• How does the computer add two numbers with a
different exponents?

• It first makes the two exponents equal: the exponent
of the smaller number is made equal to that of the
larger number.

• In the process the mantissa must be bit shifted.

CKR Class Notes in C 127

Significant figures (contd)

• Thus, to get
1
where 1 10 6,

the computer first represents both to the same
exponent,
1 1 100

0.000001 100,

and then adds the mantissae

1 1.000001 100

CKR Class Notes in C 128

Bit shifting

• That is,
– Step 1: Make the two exponents equal.
– Step 2: Adjust the mantissa of the smaller number.

• (Naturally, the preference is to adjust the smaller
number.)

• In binary representation, the mantissa is adjusted by
bit shifting.

CKR Class Notes in C 129

Example

• To perform 1.5 + 64
– Above numbers are in decimal representation.

• In binary representation
1.5 1.1 20

64 1.0 26

• Thus, the number 1.5 must be adjusted, and written
as
1.1 20 0.0000011 26

• The original mantissa corresponded to the bit pattern
f = 1000 0000 0000 0000 0000 000

CKR Class Notes in C 130

• After adjusting the exponent, the new mantissa
corresponds to the bit pattern

f = 0000 0110 0000 0000 0000 000

• The bits in the mantissa have been shifted to the
right.

CKR Class Notes in C 131

• Q. What happens if the original mantissa was

f = 1000 0000 0000 0000 0000 001

CKR Class Notes in C 132

• A. The tail end bit disappears when the mantissa is
bit shifted.

CKR Class Notes in C 133

• There are only 23 bits in the mantissa.

• Q. What happens if we have to shift by more than 23
bits?

CKR Class Notes in C 134

• A. If we have to shift the mantissa of a float by more
than 23 bits, the entire mantissa disappears!

CKR Class Notes in C 135

Summary

• When two numbers with unequal exponents are
added, the mantissa of the smaller number is bit
shifted to the right.

• In this process, the tail bits of the mantissa
disappear.

• Since a float has only 23 bits for the mantissa, if the
mantissa has to be shifted by more than 23 bits, the
entire mantissa disappears.

• 23 bits corresponds to about 7 decimal places.

CKR Class Notes in C 136

• Conclusion: if the exponent of two floats differs by more
than 7 decimal places, then adding the two floats gives
the larger float.

• That is, if
 10 7

• then

1 1

• That is, relatively insignificant quantities are
discarded or “zeroed” in the process of a calculation.

CKR Class Notes in C 137

Historical note

• As stated earlier, the term “algorithm” comes from
the Latin name Algorismus of Al Khwarizmi,

– a 9th c. Arab scholar who translated the works of
Brahmagupta etc.

• These arithmetic techniques were imported into
Europe, beginning with Pope Sylvester from the
10th. century.

• These algorismus techniques competed with the
abacus techniques in Europe for FIVE centuries.

CKR Class Notes in C 138

