	Number of decimal places of precision has reduced! We supplied a value correct to 12 decimal places The output is correct only to 6 decimal places, and the sixth digit is wrong. How did this happen?
•	Number of decimal places of precision has reduced! We supplied a value correct to 12 decimal places The output is correct only to 6 decimal places, and the sixth digit is wrong. How did this happen?
•	We supplied a value correct to 12 decimal places The output is correct only to 6 decimal places, and the sixth digit is wrong. How did this happen?
	The output is correct only to 6 decimal places, and the sixth digit is wrong. How did this happen?
•	How did this happen?
0.00	
CKF	Class Notes in C 89
Flo	ats: Mantissa-exponent representation
•	Any noar (real number) can be written as
	$r = s \times M \times B^{e^{-c}}$
	e – eign
	ə = əiyii
	s = sign M = mantissa
	S = sign M = mantissa B = base
	s = sign M = mantissa B = base e = exponent
	S = sign M = mantissa B = base e = exponent E = bias
	S = sign M = mantissa B = base e = exponent E = bias

____|

— | |____

• The • If r 0.23 23.4 еtс	e choice of mai = 0.234, r can l 34 10234 × 10 ³ 4×10 ⁻²	ntissa and expo be written as Class Notes in C	nent is not un	ique.
• If r 0.23 23.4 etc. <i>СКР</i>	= 0.234, r can l 34 30234 × 10 ³ 4×10 ⁻²	be written as Class Notes in C		0
0.23 0.00 23 etc. скя Еloats: II	34 00234 × 10 ³ 4×10 ^{−2}	Class Notes in C		01
еtс. Скя		Class Notes in C		01
CKR		Class Notes in C		01
CKR		Class Notes in C		01
CKR		Class Notes in C		01
CKR		Class Notes in C		01
Floats: IF				91
Floats: IF				
Floats: IF				
	EE representa	ation		
• In c	computers, usi	ually B = 2.		
 For the 	B = 2, the mai form	ntissa is norma	ised if it is wri	tten in
1. <i>f</i> wh	ere 0≤ <i>f</i> <1			
• The	e exponent, too	o, is represente	d in binary.	
• A fl dec	oat correspon	do to 1 hutoo -		
	laration	las to 4 bytes =	32 bits. Thus,	the

|___

floa	at radius;		
•	reserves 32 bits of space in the com	puter memory.	
•	According to the IEEE floating point 1985 these bits are distributed as fol	standard 754 of Iows.	
	s eeeeeee ffffffffffffff (1) (8) (23)	ffffffff	
CKR	Class Notes in C	93	
Floa	ts: IEEE representation		
•	Using these 32 bits, the floating poin recovered as follows,	nt number is	
•	Using these 32 bits, the floating poin recovered as follows, – according to the IEEE specification (a) Treat the sign bit as an integer state	nt number is on 754 of 1985. such that 0≤ <i>s</i> ≤1.	
	Using these 32 bits, the floating poin recovered as follows, - according to the IEEE specification (a) Treat the sign bit as an integer so (b) Treat the 8 exponent bits as the b representation of an integer <i>e</i> such t	It number is on 754 of 1985. such that $0 \le s \le 1$. lits of the binary hat $0 \le e \le 255$	
	Using these 32 bits, the floating poin recovered as follows, – according to the IEEE specification (a) Treat the sign bit as an integer so (b) Treat the 8 exponent bits as the bits representation of an integer <i>e</i> such t – Thus, if the bits are designated by	It number is on 754 of 1985. such that $0 \le s \le 1$. wits of the binary hat $0 \le e \le 255$ y e_p then	
•	Using these 32 bits, the floating point recovered as follows, - according to the IEEE specification (a) Treat the sign bit as an integer <i>s</i> is (b) Treat the 8 exponent bits as the bits representation of an integer <i>e</i> such t - Thus, if the bits are designated by $e = \sum_{i=0}^{7} e_i 2^i$	It number is on 754 of 1985. such that $0 \le s \le 1$. wits of the binary hat $0 \le e \le 255$ y e_p then	

|___

Duttin a k	t all ta wath av	
• Putting i	t all togetner,	
MAXFLOAT =	10^{38} $ imes$ $10^{0.227}$ $ imes$ 1.9999999	
= 1	0^{38} $ imes$ 1.687 $ imes$ 1.9999999	
= 3	.37 \times 10 ³⁸	
• We can d	check this out with a small progran	٦.
CKB	Close Nates in C	405
		1115
		105
Floats: maxim Program 5 /*Program r Function: T	um and minimum name: MaxMin.c To show the maximum and min	imum
Floats: maxim Program 5 /*Program r Function: T floating pc	um and minimum name: MaxMin.c Po show the maximum and min bint values */	.imum
Floats: maxim Program 5 /*Program r Function: T floating pc #include <s< td=""><td>um and minimum name: MaxMin.c To show the maximum and min pint values */ stdio.h></td><td>limum</td></s<>	um and minimum name: MaxMin.c To show the maximum and min pint values */ stdio.h>	limum
Floats: maxim Program 5 /*Program r Function: T floating pc #include <s #include <c< td=""><td>um and minimum name: MaxMin.c To show the maximum and min pint values */ stdio.h></td><td>imum</td></c<></s 	um and minimum name: MaxMin.c To show the maximum and min pint values */ stdio.h>	imum
Floats: maxim Program 5 /*Program r Function: T floating pc #include <s #include <c #include <v< td=""><td>um and minimum name: MaxMin.c No show the maximum and min pint values */ stdio.h> conio.h> ralues.h></td><td>.imum</td></v<></c </s 	um and minimum name: MaxMin.c No show the maximum and min pint values */ stdio.h> conio.h> ralues.h>	.imum
Floats: maxim Program 5 /*Program r Function: T floating pc #include <s #include <c #include <v main() f</v </c </s 	um and minimum name: MaxMin.c Po show the maximum and min bint values */ stdio.h> conio.h> zalues.h>	.imum
Floats: maxim Program 5 /*Program r Function: T floating pc #include <s #include <c #include <v main() { float a</v </c </s 	um and minimum name: MaxMin.c Po show the maximum and min bint values */ stdio.h> conio.h> ralues.h> b:	iimum
Floats: maxim Program 5 /*Program r Function: T floating pc #include <s #include <c #include <c #include <c float a, a = MAXF</c </c </c </s 	um and minimum name: MaxMin.c Po show the maximum and min pint values */ stdio.h> stdio.h> ralues.h> b; rLOAT;	.imum
Floats: maxim Program 5 /*Program r Function: T floating pc #include <s #include << #include <v main() { float a, a = MAXF b = MINF</v </s 	um and minimum name: MaxMin.c No show the maximum and min pint values */ stdio.h> sonio.h> ralues.h> b; rLOAT; rLOAT;	limum
Floats: maxim Program 5 /*Program r Function: T floating pc #include <s #include <c #include <v main() { float a, a = MAXF b = MINF system ("</v </c </s 	<pre>um and minimum name: MaxMin.c To show the maximum and min pint values */ stdio.h> conio.h> ralues.h> b; TLOAT; TLOAT; cls");</pre>	.imum
Floats: maxim Program 5 /*Program r Function: T floating po #include <s #include <c #include <v main() { float a, a = MAXF b = MINF system ("</v </c </s 	<pre>um and minimum name: MaxMin.c To show the maximum and min pint values */ stdio.h> conio.h> ralues.h> b; LOAT; rLOAT; rcls");</pre>	.imum

|___

```
printf ("\nMaximum floating point value ="
                                       "%e", a);
  printf ("\n\n\nMinimum floating point value"
                                       "= %e", b);
  getch();
  return 0;
}
  • Output:
Maximum floating point value = 3.37000E+38
Minimum floating point value = 8.43000E-37
CKR
                       Class Notes in C
                                                         107
Minimum normal floating point value
     For the minimum floating point value, the above
  •
     program gives the output
        - MINFLOAT = 8.43E-37
    According to the IEEE standard, the min floating
  •
     point value corresponds to the bit pattern
     0 0000001 0000000000000000000000
     = 2^{-126} = 10^{-37.926} =
     \textbf{10}^{-37.926} ~=~ \textbf{10}^{-38} ~\cdot~ \textbf{10}^{0.074} ~\approx~ \textbf{1.18}{\times}\textbf{10}^{-38}
CKR
                       Class Notes in C
                                                         108
```

The	dicerononov	
<u>ne</u>	Thus the program output is:	
	MINEL OAT - 8 43E-37	
	The coloulation using the IEEE standard is	
•		
	WINTELOAT = 1.10E-30	
•	$0.42 - 37 \neq 1.102 - 30$	
•	0.43 × 10 ^{0,} ≠ 1.18×10 ⁰⁰	
CKR	Class Notes in C	109
	Q. Can you explain the discrepancy?	

|____

|

______I

A Tu	rbo C Bug
•	$10^{-37} \cdot 10^{0.926} = 8.43E - 37??$
•	This is the value given in TURBO C. But the preceding step involves a mistake. The correct value would be, as we calculated.
	$10^{-37.926} = 10^{-38} \cdot 10^{0.074} \approx 1.18 \times 10^{-38}$
•	The exact value is 1.17549421E-38, on UNIX systems.
CKR	Class Notes in C 111
Mora	al
	The machine is NOT always right!
•	All programs have bugs.
•	All programs have bugs. IDE's are programs.
•	All programs have bugs. IDE's are programs. Hence, the Turbo C IDE also has bugs.
•	All programs have bugs. IDE's are programs. Hence, the Turbo C IDE also has bugs. Don't trust it blindly!
	All programs have bugs. IDE's are programs. Hence, the Turbo C IDE also has bugs. Don't trust it blindly! Good programming requires a clear understanding of what is going on.

|____

A do	ubt
•	While calculating MINFLOAT we used the bit pattern
	MINFLOAT = 0 00000001 00000000000000000000000000
•	But clearly, the following bit pattern
	0 00000000 0000000000000000000000000000
	 corresponds to a smaller number
•	Is something wrong here?
CKR	Class Notes in C 113
Sma	ller than the smallest is not normal
•	Recollect the IEEE specification Rule (7).
•	(7) If <i>e</i> =0, <i>f</i> \neq 0, then $V = (-1)^s \times 2^{e-126} \times 0.f$
	 (non-normalised number), where 0. <i>f</i> is the same as <i>f</i>.
•	MINFLOAT is NOT the smallest floating point value.
•	MINFLOAT is only the smallest NORMAL floating point value.

|____


```
Checking it out
 · What happens if we use floats outside this range?
 · We can check this out with a small program.
/*Program name: infinity.c
Function: To check what happens when we use
numbers outside the range of MAXFLOAT and
MINFLOAT*/
#include <stdio.h>
#include <conio.h>
#include <values.h>
main()
{
  float a, b, c;
CKR
                   Class Notes in C
                                              119
 a = MAXFLOAT;
 b = MINFLOAT;
 printf ("\nMax = %e, \n Min= %e", a, b);
  getch();
/*Now try putting in values of a, and b,
larger than MAXFLOAT or values of b smaller
than MINFLOAT */
 printf ("\n\n Enter a = ");
  scanf( "%f", &a);
 printf ("a = %e", a);
  printf ("\n Enter b = ");
  scanf ("%f", &b);
 printf ("\ b = e \ n'', b);
 c = a/b;
 printf ("%e/%e = %e", a, b, c);
 getch(); return 0; }
CKR
                   Class Notes in C
                                              120
```


	ng the puzzle
•	Smallest representable number depends upon the exponent,
	BUT
•	accuracy of a calculation depends upon the mantissa.
CKR	Class Notes in C 123
Deci	nal places of precision
•	According to the IEEE specifications, 23 bits are available to represent the mantissa.
	To how many decimal places does this correspond?
•	
•	
•	
•	
•	
•	

____|

— | |____

Con	verting bits to decimals
•	We can convert bits to decimal places, as before, using $\log_{10} 2 = 0.3010$
•	Thus, 23 bits corresponds to
	23×0.3010=6.923
	or about 7 decimal places of precision.
•	Thus, $1.023 \times 10^{-7} = 1.0 \times 10^{-7}$ on a computer.
•	Conclusion: The simplest floating point calculation using <i>C</i> on a computer cannot be accurate to more than 6 or 7 decimal places.
CKR	Class Notes in C 125
Rou •	nding Without going into the finer points here, we can see
	that
•	the error INCREASES with each operation with floats.
	 such as addition or multiplication
•	Hence, in the Area.c program the value of π was rounded off to 5 decimal places.

_____|

|____

Und	erstanding the solution
•	How does the computer add two numbers with a different exponents?
•	It first makes the two exponents equal: the exponent of the smaller number is made equal to that of the larger number.
•	In the process the mantissa must be bit shifted.
CKR	Class Notes in C 12
Sign	ificant figures (contd)
•	Thus, to get $1+\epsilon$ where $\epsilon=1\times10^{-6}$,
	the computer first represents both to the same exponent, $1=1\times10^{0}$
	ε=0.000001×10 ⁰ ,
	and then adds the mantissae

|

|____

Bit shifting		
 That is, St St 	ep 1: Make the two exponents equa ep 2: Adjust the mantissa of the sm	ıl. aller number.
 (Natural number. 	y, the preference is to adjust the)	smaller
 In binary bit shifti 	representation, the mantissa is ng.	adjusted by
CKR	Class Notes in C	129
Example		
 To perform At 	rm 1.5 + 64 ove numbers are in decimal repres	entation.
• In binary 1.5 ≡ 1. 64 ≡ 1.0	v representation V×2 ⁰ 0×2 ⁶	
• Thus, th as 1.1×2^0	e number 1.5 must be adjusted, = 0.0000011 $ imes 2^6$	and written
The orig	inal mantissa corresponded to t	he bit pattern

|___

•	After adjusting the exponent, the new mantissa corresponds to the bit pattern	
	f = 0000 0110 0000 0000 0000 000	
•	The bits in the mantissa have been shifted to the right.	
CKR	Class Notes in C	131
•	Q. What happens if the original mantissa was	
	f = 1000 0000 0000 0000 0000 001	

— | |____

	A. If we have to shift the mantissa of a float by more than 23 bits, the entire mantissa disappears!	
CKR	Class Notes in C 135	5
<u>Sun</u> • •	When two numbers with unequal exponents are added, the mantissa of the smaller number is bit shifted to the right. In this process, the tail bits of the mantissa disappear. Since a float has only 23 bits for the mantissa, if the mantissa has to be shifted by more than 23 bits, the entire mantissa disappears. 23 bits corresponds to about 7 decimal places.	
CKR	Class Notes in C 136	3

_____|

|____

•	Conclusion: <i>if the exponent of two floats differs by mo</i> <i>than 7 decimal places, then adding the two floats gives</i> <i>the larger float.</i>	ore S			
•	That is, if $\label{eq:expansion} \epsilon = 10^{-7}$				
•	then				
	1+ε = 1				
•	That is, relatively insignificant quantities are discarded or "zeroed" in the process of a calculati	on.			
CKR	Class Notes in C	137			
Histo	Historical note				
	 As stated earlier, the term "algorithm" comes from the Latin name Algorismus of Al Khwarizmi, a 9th c. Arab scholar who translated the works of Brahmagupta etc. 				
·	These arithmetic techniques were imported into Europe, beginning with Pope Sylvester from the 10th. century.				
•	These algorismus techniques competed with the abacus techniques in Europe for FIVE centuries.				

|____

|

|