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Like colonization, globalization requires soft power, hence cultural entrainment. Hence, estab-
lishing hegemony through the perceived inferiority of alternative cultural practices still remains
a critical aspect of the political agenda, and this naturally creates an inequitable environment.
Cultural practices should be accepted or rejected only after a critical evaluation. Here, this
understanding is applied to mathematics education. Today geometry is taught using the com-
pass box, assumed to be superior to the rope/string (rajju) that was traditionally used in the
teaching of mathematics in India. A comparative evaluation of the two practices was never
done, and the Western technique was blindly accepted as superior. However, the development
of the “infinitesimal” calculus in India was facilitated by the use of a flexible rope as the basic
geometrical instrument—used to measure the length of a curved line. This made manifest
the in-principle meaning of the length of a curved line—something declared to be beyond the
capacity of the human mind by Descartes who based himself on the straight line. The compass-
box reinforces this difficulty by suggesting the straight line as the basis of geometry. Descartes’
difficulty arose because of a cultural mismatch in the understanding of mathematics, and this
difficulty continues to haunt school children today who are ironically compelled to view a
simple matter from a complex Western perspective. Since the rope can perform the function of
each instrument in the compass-box, the low-cost rope is suggested as a superior replacement
for the currently-used compass-box.

Introduction

Globalization, like colonization, aims for hegemony or the
conquest of the human mind. Accordingly, Huntington advo-
cated soft power as the key instrument of globalisation. Soft
power, and the uniformity of values required for globaliza-
tion to work, is achieved through cultural entrainment. This
process requires that alternative cultural values and practices
are automatically perceived as inferior. A trivial example is
the English language. In colonial times, English speakers re-
garded themselves as superior. This is still true in the epoch
of globalisation, since the uniform value is that of maximis-
ing income, and the highest incomes come from jobs in a
transnational company, where knowledge of English obvi-
ously is a must. When certain cultural values become domi-
nant, other cultural values are perceived as intrinsically infe-
rior.

The chauvinistic reponse to this state of affaris is to un-
critically reassert all traditional cultural values. However,
this can easily degenerate into a programme of promoting
superstitions like, say, astrology traditionally used to main-
tain the power of the priest, hence inequity. I do not advocate
any such blind acceptance of things in the name of tradition:
everything ought to be critically examined. However, on the
other side, I have been unable to find even a single instance
of a critical evaluation and rejection of any Western practice
since independence.

In the case of the Lakshadweep islanders, and in the mat-
ter of navigation, I have pointed out (Raju, 2007) the harm
caused by the uncritical perception of Western practices as
automatically superior. In 1939, the Lakshadweep islanders
started learning British techniques of navigation in school,
and became dependent upon imported British instruments
which they could not produce. The instruments the islander
could afford to buy were less accurate than their indigenous
instrument thekam̄al. The British techniques were assumed
superior, without evaluation.

This paper concerns mathematics education where we can
see a more fundamental manifestation of a similar phenom-
enon. Today, the compass box is an inseparable aspect of
mathematics education. The traditional practice in India was
to use a rope (rajju), and it is still possible see some carpen-
ters or construction workers using this technique today. I was
unable to findany study which had evaluated the two tech-
niques and reached the conclusion that the compass box was
superior. Our scientists and math educators do not seem to
have considered such an evaluation necessary over all these
years: science for them seems to mean imitation of the West!
However, in this case, we seem to be imitating the mistakes
of the West, without noticing that this makes math education
more difficult today.

Some recent publications (Raju, 2001, 2007) have brought
out the historical development of the “infinitesimal” calculus
in India, over a thousand years, and its subsequent transmis-



2 C. K. RAJU

sion to Europe where it was attributed to Newton and Leib-
niz by Western historians of science who have systematically
denied non-Western contributions to science. In the process,
they have hidden the enormous difficulties that Europeans
had in understanding this imported technique of calculation
because of culturally dissimilar ways of understanding math-
ematics. On the principle that phylogeny is ontogeny, these
European difficulties in understanding Indian mathematics
are today ironically passed on to our children.

Some of the cultural factors that facilitated the invention
of the calculus in India were specific to India. For example,
Indian wealth depended on agriculture, which depended on
the monsoons, necessitating a precise calendar to mark the
(“erratic”) rainy season. The calendar was made for a central
meridian (of Ujjaini) and recalibrated across a large cultural
area, India, by determining local latitude and longitude, and
the size of the globe, using trigonometry. Precise trigonomet-
ric values were required for this. Geometrical techniques be-
ing cumbersome, precise trigonometric values were obtained
in the 5th c. CE using an elegant finite difference technique
which developed into the calculus over the next thousand
years, as the demand for precision increased.

Other cultural factors were more general, and the aim of
this note is to point out the potential value, for current school
education, of one such cultural factor.

The calculus began with the determination of the length
of the circumference of a circle in units of the radius, or the
calculation of the number today calledπ.1 How does one
determine the length of a curved line?

The compass-box

This question is not easy to answer today just because the
compass-box is so essential an aspect of a child’s school kit.
The box strongly suggests the straight line as the basic notion
of geometry.

The geometry presupposed by the compass-box is metric
rather than synthetic2 for the box has a scale (rather than an
unmarked straight edge) and compasses (which are not “col-
lapsible”), so that distancescanbe picked and carried, and it
is meaningful to measure lengths. However, the rigid scale
allows one to measure the length of only straight line seg-
ments. The compass-box does not provide any instrument
to measure the length of a curved line segment. One cannot
measure even the length of an arc of a circle, only the an-
gles in degrees that various circular arcs might form—hence
many children never understand the natural radian measure,
which depends upon being able to measure the length of the
arc. Hence, also, most students are more comfortable with
360◦ than with 2π.

In fact, students acquire only an operational understanding
of the notion of a degree by using the protractor. Since an an-
gle is defined not as the relative length of a circular arc, but
as something connected with pairs of straight line segments,
students remain woolly about the meaning of a degree. A
degree is the 90th part of a right angle, but what is the entity
which is being divided into 90 equal parts?

It would not be accurate to say that the compass-box is

based on “Euclidean” geometry, since metric geometry triv-
ializes theElements(while Hilbert’s synthetic interpretation
does not3 fit the entireElements). Nevertheless, one might
say that the present-day compass-box still suffers from a
hangover of idealism4 (“Platonism”, “Neoplatonism”) in re-
garding the straight line as the ideal figure underlying geom-
etry.

This hangover presumably relates also to the practical
value of navigation, for the compass-box also mimics the
tools of the European navigator who, proceeding from an ide-
alistic understanding of geometry, took the straight line as the
primary geometric figure. The dependence of European nav-
igators on the straight line became evident in the 16th c. CE
when they started making long voyages across the sea. Over
short distances, such as those in the Mediterranean sea, the
surface of the sea could be regarded as approximately plane.
On a plane surface a ship steering a constant course (set by,
say, a magnetic compass or by the straight line joining two
stars) should trace a straight line. However, on the globe, the
ship traces acurvedline, called a loxodrome (fromloxos=
oblique, anddromos= curve). Except in cardinal directions,
this curve is not even a great circle as European navigational
theorists like Nunes initially took it to be. Because European
navigational techniques were so dependent upon the straight
line, European navigators in the 16th c. CE could not nav-
igate without charts which showed loxodromes5 as straight
lines. Hence, the great value of the Mercator chart (com-
mon “map of the world”) in which loxodromes are straight
lines. So great was the value of this chart to European nav-
igators that subsequent British naval supremacy is put down
to a better understanding of this chart! Because the compass-
box mimics the European navigator’s paraphernalia, though
set squares and dividers are rarely used, they ritually remain
part of the box.

Indian rope geometry

Now, India has had an old tradition of geometry from
the days of thésulba s̄utra-s (−6th c. CE), which precede
Greek geometry. The “śulba” refers to a rope, and “rajju”,
also meaning rope, or string, was a common part of the
Indian school syllabus in pre-British times. It is still used
by artisans, but is no longer taught in formal schools—such
practical things are looked down upon from the (“Platonic”)

1 The first determination ofπ is often attributed to Archimedes.
But the earliest evidence for this comes from manuscripts some
1600 years after Archimedes, which cannot credibly be connected
to Archimedes or even to his 6th c. CE commentator Eutocius.

2 For more details on synthetic geometry, see Moise (1963); for
a comparative account of the instruments used by various types of
geometry, see Raju (2001a).

3 Raju (2001b)
4 Raju (2006)
5 Since the calculation of loxodromes involves the determination

of a curve given its tangent at every point, this is equivalent to the
fundamental theorem of calculus (Struik, 1969), although the solu-
tion to this problem was known in Europe about a century before
the calculus officially arrived there.
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point of view of geometry regarded as high metaphysical dis-
course.

The introduction of British education in India, even in
contexts where there was no noticeable colonial plot, some-
times made local people conceptually and technologically
dependent on remote foreign sources, while teaching tech-
niques that were inferior to local techniques. Let us see this
in the case of the rope vs the compass-box.

The rope or a string can be used to do a number of things.
1. By holding it taut (possibly by fastening one end) one

can draw a straight line, so it can perform the function of a
straight edge.

2. By choosing any appropriate unit, it can be made into a
scale. Traditionally, knots were used for marks. This “primi-
tive” technique, when combined with the two-scale principle
(nowadays called the Vernier principle) as in early naviga-
tional instruments like thekam̄al, gives a remarkably high
degree of accuracy. (In particular, thekam̄al I obtained from
the Lakshadweep islands, though characterized as “primi-
tive” by 19th c. British historians, could measure angles ac-
curate to 10′ of the arc or1

6
◦
. British school education re-

placed it by a steel sextant, and the sextant the islanders could
afford was less accurate being graduated in degrees.6)

3. By keeping one end fastened and moving the other end
around, one can draw a circle. So the rope performs the func-
tion of a compass.

4. Most importantly, a rope can be used to directly mea-
sure the length of the arc, hence an angle in radians: simply
lay the rope along the curve, and straighten it to compare with
the length of a straight line segment. By measuring circular
arcs, a rope also serves as a protractor which measures angles
in radians.

5. By marking two points on it a distance can be picked
and carried, so a rope (or string) can perform the function of
a divider.

6. Using the “fish figure” (the figure inElements1.1), it is
easy to construct a right angle, and by bisecting or trisecting
it, it is easy to construct angles of 45◦, 30◦, and 60◦, so it also
performs the function of set squares.

7. By fastening two points, one can also draw an ellipse
with the rope. This is impossible with the compass-box.

So, a rope (or a piece of twine) can be used to do every-
thing that can be done with a compass-box, and something
more: it can measure the length of both straight and curved
lines. The most important new capability is the fourth one,
above, for it directly assigns a meaning to the length of the
arc, or the length of a curved line. This is the sort of mean-
ing that a child can easily grasp (with the hand as well as
the mind). The same thing is not possible with a ruler, and
assigning a meaning to a curved line starting from straight
lines requires the calculus.

The difficulty

As already stated, students accustomed to the compass-
box find it difficult to grasp the notion of the length of a
curved line. The level of difficulty involved is made clearer
by the reaction of a leading Western thinker, regarded as one

of the founders of modern geometry, René Descartes, when
he was first exposed to the notion of the length of a curved
line. Descartes went so far as to assert that assigning a mean-
ing to the length of a curved line, using straight lines, was
beyond the capacity of the human mind!

the ratios between straight and curved lines are
not known, and I believe cannot be discovered
by human minds, and therefore no conclusion
based upon such ratios can be accepted as rigor-
ous and exact.(Descartes, 1996, Book 2, p. 544)

Descartes’ reaction was not an idiosyncratic one. Another
great name of the times was Galileo, who privately raised
similar objections about the calculus in his letters (Mancosu,
1996) to Cavalieri—hence Galileo allowed Cavalieri to pub-
lish on the calculus, but did not publish on it himself for he
was unwilling to jeopardize his reputation.

The basic difficulty noticed by Descartes, Galileo et al. is
that to measure a curved line, using straight lines, one re-
quires an infinity of infinitesimal line segments, and these
thinkers thought that the concept of an infinity of infinitesi-
mals brought in problems of the sort that were best left to the
divine. Berkeley’s devastating critique of Newton and Leib-
niz, articulated a century later (Berkeley, 1734), proceeded
on similar grounds, and could simply not be answered by his
contemporaries (Jurin, 1735; Robins, 1735). It is on account
of these epistemological difficulties that it took so long for
the calculus to become epistemologically respectable in Eu-
rope, despite its obvious practical value.

The epistemological basis of these difficulties is, in a
way, captured by the differences between rope geometry and
compass-box geometry: historically speaking, the notion of
the length of a curved line followed the arrival of the calculus
in Europe, while the notion preceded the development of the
calculus in India—just because with a rope there is nothing
mysterious about the length of a curved line.

On the principle that phylogeny is ontogeny, one can ex-
pect the difficulties (raised e.g. by Descartes, Galileo and
Berkeley) about the length of curved lines to be repeated in-
numerable times in the minds of students as history repeats
in the classroom today.7

Other considerations

Apart from the epistemological angle, we can also con-
sider the situation from the economic angle, which is impor-
tant if we want to take education to poorer people in India.

6 The kam̄al was the instrument used by the Indian navigator,
Malmi Kanha, who brought Vasco da Gama from Melinde to India
across the “uncharted” sea which Vasco da Gama could not pos-
sibly have navigated on his own, for, like Columbus, he knew no
celestial navigation. The two-scale principle used in thekam̄al is
elaborated in Raju (2007) chp. 6. Thekam̄al is more sophisticated
since it does harmonic interpolation rather than linear interpolation.
The use of the two-scale principle for harmonic interpolation was
not explicit in earlier publications on thekam̄al, including the one
by this author.

7 For more on the pedagogical consequences, see Raju (2005).
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In India, a person is defined as poor if that person cannot
purchase two square meals (2400 Calories) a day. In this
context, a compass-box or geometry set is expensive. It uses
metals and plastics, and cannot be built locally. Most poorer
children who cannot afford to purchase books do not pur-
chase compass-boxes. If they do, and a piece goes missing
it is not replaced. The compass-box is designed for use with
pencil and paper (and sharpener and eraser) all of which add
to the “running costs”. These costs might be trifling in the
US, but they are non-trivial in India, and unaffordable for a
large group of poor students for whom the free mid-day meal
offered in schools is a major attraction.

Finally, we can also look at the ecological angle. A rope
or string can be used to draw figures even on the ground, al-
though onecouldeasily design it for use with pencil and pa-
per if one wanted to, and also add markings, as in a measur-
ing tape, to make it function like a scale. This re-usability (of
the ground) with the string also makes it more eco-friendly
than even acid free paper! Ironically, this is also appropriate
to the conditions of many Indian schools, since, over the last
half a century, the Indian government has consistently man-
aged to provide ample luxuries for government officials but
has not been able to provide classrooms for poor villagers,
even though the Indian Constitution guarantees free educa-
tion for all children, but does not guarantee luxuries for gov-
ernment officials.

Conclusions

The rope (or string) is flexible in more ways than one
and can be used to do everything that can be done with a
compass-box. It can further be used to measure the length of
a curved line, impossible with the instruments in a compass-
box. This is helpful for the measurement of angles, and the
subsequent transition to trigonometry and calculus. The rope
is also inexpensive, locally-constructible, eco-friendly, and
suited to conditions prevalent in countries like India. Hence,
it is a superior replacement for the compass-box.
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