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Abstract: Experiments with the simple pendulum are easy, but
its motion is nevertheless confounded with simple harmonic motion.
However, refined theoretical models of the pendulum can, today, be
easily taught using software like calcode. Similarly, the cycloidal
pendulum is isochronous only in simplified theory.

But what are theoretically equal intervals of time? Newton ac-
cepted Barrow’s even tenor hypothesis, but conceded that ‘equal mo-
tions’ did not exist—the refutability of Newtonian physics is indepen-
dent of time measurement.

However, time measurement was the key difficulty in reconciling
Newtonian physics with electrodynamics. On Poincaré’s criterion of
convenience, equal intervals of time ought be so defined as to make the
enunciation of physics simple. Hence he postulated constancy of the
speed of light. (The Michelson-Morley experiment was not critical.)
The theory of relativity followed. But does there exist a proper clock?

Introduction

The simple pendulum is practically the first ‘real’ physics experiment that
school students perform—or ought to perform—in standard 7 or 8. It is an

∗Draft: please do not quote without the author’s permission.
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introduction to the experimental method in science—to the idea that science
proceeds from the empirically manifest, and from inferences from it, and that
these are more reliable means of knowledge than mere authority.

However, in my experience both as a parent and as one who has taught
‘refresher courses’ to school teachers, science teachers in even the most elite
Indian schools tend to be persistently confused about this first step. An
anecdote quickly illustrates the state of affairs.

My elder son came to me with his 7th standard school text which stated
that the time period of the simple pendulum is independent of amplitude,
even when the angular amplitude was 90◦. The text encouraged children to
perform various experiments to test this ‘fact’ for themselves. It went on to
state that grandfather clocks used a simple pendulum.

I was horrified for various reasons. The author of the text, who was also
a teacher in the school, stated that she had taught this for ten years before
penning the text. It was apparent that, in these ten years, the author of the
text had never actually performed the first experiment that she encouraged
the students to perform. It was also apparent that she never had enough
curiosity to take apart a grandfather clock and see the kind of pendulum
that it actually used. The science she taught did not, for her, relate to any
of her actual experiences.

This being one of the most elite schools in Delhi, with a singular princi-
pal, on my protest the school eventually agreed to correct the text—though
nothing obviously could be done for the students who had learnt from it for
ten years. My son went on to actually perform an experiment on this, and to
compare with the theoretical variation of the time period of the pendulum
with amplitude.1.

The next part of the anecdote concerns my younger son, eleven years
later, then also in the 7th standard. During a routine interaction with his
science teacher, I suggested ways in which science teaching could be made
more interesting, by relating it to the actual experiences of the child, and
pointed to my earlier experience, and how that led my elder son to develop
an interest in science. The science teacher listened patiently. I thought I
had convinced her. The next day, she told my son in front of the class that
she had listened to me only out of politeness, and that actually what I was
saying was completely wrong, since she had verified that the time period of
the simple pendulum was independent of its amplitude!

Let me admit straightaway that this anecdotal evidence is not statistically
representative—the situation in most schools in India is undoubtedly far
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worse! In fact, even the samples of teachers to whom I taught refresher
courses were not statistically representative.

However, it seems to me fair to generalise as follows. The simple pen-
dulum, widely regarded as an excellent tool for science teaching, helps to
bring out also the infirmities of science teaching. At least in India, there is
widespread confusion regarding it: confusion which demonstrates confusion
about the very nature of science in the minds of school science teachers. To
check the truth about even so simple a thing like the pendulum, the teacher
relies not on an experiment performed by hand, but on the authority of a
text. The problem with this process is of course well known—under these
circumstances, the teacher cannot have a real idea of how authoritative or
accurate a text is. Thus, even in as simple a matter as the simple pendulum,
wrong notions are persistently taught. Exactly how widespread is this con-
fusion in the minds of science teachers obviously requires further statistical
studies, but I would not be surprised if such studies came up with a figure
exceeding 95%.

The theoretical confusion about the pendulum obviously originates in the
simplified theory of the pendulum, for small oscillations, for which, using the
approximation sin θ = θ, one obtains its equation of motion as the equation
of simple harmonic motion

θ̈ = p2θ. (1)

Here p2 = g
l
, g is the acceleration due to gravity and l is the length of the

pendulum, so that its time period T = 2π
p

is independent of the amplitude,
and is usually written

T = 2π

√
l

g
. (2)

Variation in the time period of the simple pen-

dulum

Why is this simplified theory so widespread? Because the more precise theory
is regarded as something too difficult to teach in schools. But is that really
the case?

For larger oscillations, one can no longer use the approximation sin θ = θ,
and the equation of motion of the simple pendulum is given by (Synge and
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Griffiths 1959, p. 334)

ẏ2 = p2(1− y2)(1− k2y2), (3)

where,

k = sin
α

2
(4)

y =
1

k
sin

θ

2
,

and α is the angular amplitude of the pendulum.
Strangely, the difficult part of solving this equation is to specify the sign

of the square root in (3). (Thus, only one sign cannot be specified, since the
sign of the square root must change as y crosses a maximum.) To do this, it
is helpful to first rescale the equation, using x = pt, so that it becomes,(

dy

dx

)2

= (1− y2)(1− k2y2). (5)

Jacobi’s method of specifying the choice of square root was to introduce
three new functions. The function sn(x) is specified as a continuously differ-
entiable solution of (5) which further satisfies,

sn(0) = 0, sn′(0) > 0. (6)

The continuously differentiable functions cn(x), dn(x) are defined by the
conditions

cn2(x) = (1− sn2(x)), cn(0) = 1 (7)

dn2(x) = (1− k2sn2(x)), dn(0) = 1. (8)

These are the Jacobian elliptic functions. Since sn is a solution of (5),
we can now specify the square root by regarding the three Jacobian elliptic
functions as solutions of the three simultaneous differential equations:

d

dx
sn(x) = cn(x)dn(x) (9)
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d

dx
cn(x) = −sn(x)dn(x) (10)

d

dx
dn(x) = −k2sn(x)cn(x). (11)

We already know that the solution of the motion of the simple pendulum
is given by the y = sn(x) + c, so that time period of the simple pendulum
relates to the time period of the sn function. This is known to be given by
the symbolic expression

4K =
∫ 1

0

dy

(1− y2)(1− k2y2)
. (12)

involving a non-elementary elliptic integral.
There was a time, not so long ago, when people used to write advanced

tomes devoted mostly to tabulating these widely used but hard-to-evaluate
integrals (Byrd 1971). This probably explains why many school science teach-
ers, who may not even be specialists in physics, are completely unaware of
the exact theory of the simple pendulum, and incorrectly believe, like Galileo,
that the simple pendulum is isochronous.

However, today, the job of numerically evaluating elliptic integrals can
be done by a simple computer program like my calcode,2 which accepts
symbolic input and provides a graphic output, and permits further calcula-
tion with the numerical output. Since the derivation of the equations is not
a particularly hard matter, neither is their solution. So it is possible today
to teach the more precise theory of the pendulum in schools, and along with
it a better idea of what science is about, and the difficulties that attend to
confirming or refuting theory by experiment.

Note that a numerical computation of this sort may be expected to be
significantly superior to the usual simplified formula for the amplitude de-
pendence of the time period of the pendulum which is obtained using a power
series expansion to give

T = 2π

√√√√( l

g

){
1 +

(
1

2

)
sin2

(
α

2

)
+
(

1 · 3
2 · 4

)
sin4

(
α

2

)
+ . . .

}
(13)

≈ 2π

√√√√( l

g

)(
1 +

α2

16

)
. (14)
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The difference between the formulae (2) and (14) is tabulated in the unnum-
bered table on p. 20 of the project already referred to. The difference in the
second decimal place is actually quite large, for it means a difference of one
second in 100 oscillations, which would take hardly 30 minutes. So, if one
is thinking of building a clock with this theory, the difference would amount
to something like a minute in the course of a day. If one uses this clock for
navigation, to determine longitude at sea, that could be decidedly fatal.

Further, as is clear from that student project already referred to, one
needs either greater experimental or theoretical sophistication: experimen-
tal sophistication to make the apparatus conform to the assumptions, or
theoretical sophistication to make the calculations conform to the state of
experimental affairs. In my opinion, it is harder to refine the experiments,
but easy today to sharpen the theory. For this, one would want to take into
account things like friction at the point of suspension, and air resistance etc.,
and though this would make the symbolic solution well nigh impossible—
and certainly far out of the reach of students—the calculations are easy to
perform via software like calcode.

This, then, is my first conclusion. That software available today can
make the task of science teaching and learning much easier and more inter-
esting, by freeing both teachers and students from the need to make various
unrealistic simplifying theoretical assumptions, especially as regards New-
tonian mechanics. It is possible today to allow the the student to explore
theoretically and experimentally a variety of factors—the sort of exploration
that could not have been contemplated twenty years ago—which exploration
can provide a far more realistic idea of the nitty-gritty of science, instead of
projecting science as all grand (but unrealistic) theory.

The cycloidal pendulum

Of course, software like calcode can also be used to study the cycloidal
pendulum. The cycloidal pendulum designed by Huygens is so constructed
that the bob is obliged to move along a cycloid. A cycloid is the curve traced
out by a point on the circumference of a circle, when the centre of the circle
moves in a straight line with constant velocity. For example, a pebble stuck
in the tyre of a cycle traces out a cycloid, when the cycle moves with constant
velocity. The parametric equations of a cycloid are given by

x = r(θ − sin θ) (15)
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y = r(1− cos θ). (16)

The cycloid is a very interesting curve from a number of viewpoints, and
its mathematical properties have been explored in great detail, and one can
readily find many excellent expositions of it, for example, in the nice book
by Simmons (1972). Briefly, the cycloid is the brachistochrone (brachistos =
shortest, chronos = time; path of quickest descent), and also the tautochrone
(tauto = same; hence path of equal descent, on which a falling object will
reach the bottom at the same amount of time, no matter from where it
starts). (Note that a ‘taut’ string also has the tautochronous property, in
the sense that whether it is plucked a little or a lot, it makes the same sound,
i.e., vibrates with the same time period.) The last property is related to the
isochronous nature of the cycloidal pendulum, namely that its time period
is independent of the amplitude, and is given by

T = 4π

√
r

g
, (17)

where r is the radius of the generating circle of the cycloid, and g is the
acceleration due to gravity as before.

The typical description of the cycloidal pendulum relies on Huygens’
mechanism of two cycloidal arches or ‘cheeks’ used to constrain the motion
of the pendulum. This has costly implications in terms of the friction along
the arcs which which generates effects larger than the circular error corrected
by cycloidal motion (Gardner 1984). Also, practically speaking, it is hard to
construct the arches so as to give a mathematical cusp, so it also requires
the pendulum to oscillate through a large amplitude.3

The point I am making is, I hope, perfectly clear. Exactly like my chil-
dren’s school teachers, most teachers and books around the world seem sat-
isfied with presenting a neat and satisfying, but over-simplified theoretical
account of the isochrony of the cycloidal pendulum, as opposed to a real-life
account of it. The attitude is the same, the level of technicality is different.
Perhaps I should clarify at this stage that I have no objection to simplifica-
tion, as such—it seems to me perfectly reasonable to present to a child an
abridged version of a big novel. I also do not deny the possibility that in
some cases, like Toynbee’s A Study of History, an abridgement might decid-
edly improve upon an excessively prolix original, though this is often not the
case. In any case, no one—not even a child—would confuse the abridgement

7



with the original. Therefore, at a more fundamental level, my complaint is
this: a simplified account is being taught as an ‘ideal’ account.

Let me explain what I mean. Historically speaking, Huygens’ claim of the
isochrony of a real cycloidal pendulum was disestablished only a few years
after Galileo’s claim of the isochrony of the simple pendulum was refuted.
As Huygens recounts,

at the request of the Directors of the Indies Company I undertook
for finding longitudes to construct clocks of . . . sure and constant
motion.4(Mahoney 1980)

There were various difficulties in testing the clocks which were finally put
to proper test on the ship Alkmaar in 1687. According to the clocks, the
Alkmaar had sailed right through Ireland and Scotland rather than around
them!

Huygens had heard of the reported phenomenon of the variation in the
‘length’ of a pendulum with latitude, and though this had been discounted
by people like Jean Picard, Huygens suggested a theoretical explanation for
it in terms of the centrifugal force due to the rotation of the earth. He
reasoned that the centrifugal force diminished the weight of bodies depending
on latitude. He calculated that a pendulum clock regulated to mean time at
the poles would fall behind by about 2.5 minutes at the equator. If longitude
were determined using such a clock, then if the clock were carried along the
same meridian from poles to equator, it would indicate an apparent shift of
longitude to the east. Nevertheless, the result of a second trial of Huygens’
clocks in 1690–92 also disappointed everyone, and Huygens admitted that ‘I
have found the business much more difficult than I thought at the outset.’

Nevertheless, the current attitude is that Galileo was somehow ‘wronger’
than Huygens—because Galileo was ‘mathematically’ wrong while Huygens
was only ‘physically’ wrong! While it is apparent that neither kind of pendu-
lum resulted in an accurate clock, the belief is that the simple pendulum is
not isochronous even from a theoretical viewpoint, while the cycloidal pendu-
lum is. Therefore, the simplified theory of the cycloidal pendulum continues
to be taught, while most accounts will mention that the linear theory of the
simple pendulum is a simplification.

But the fact is that the simplified theory of the cycloidal pendulum is
equally unrealistic. In fact, so far as clock makers were concerned, many of
them took the position that the variation of the time period of the simple
pendulum with amplitude was of no consequence.
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Although this [Huygens’ cycloidal pendulum] is a perfect theo-
retical solution to the problem of circular error, it has never been
put into practice successfully. It will be appreciated that the
existence of circular error as such is of no importance so far as
timekeeping is concerned; it is only the variations in error which
matter. Hence, circular error would be satisfactorily accounted
for by maintaining a constant amplitude. (Bishop 1955)

Thus, clockmakers focussed on what would happen to the rate of the
clock if small ‘kicks’ were administered to the simple pendulum to keep its
amplitude constant. These ‘kicks’ were conventionally known as impulse, and
were supplied through the escapement. Thus, the corresponding error came
to be known as ‘escapement error’. Airy suggested in 1827 that the escape-
ment error could be made zero to the first order if impulses were supplied
symmetrically around the zero position of the pendulum.

Equal intervals of time in Newtonian mechan-

ics

It should be fairly clear by now that, from a practical point of view, the
cycloidal pendulum could never be made to mark equal intervals of time. For
both Galileo and Huygens, the real problem of isochrony was the practical
problem of determining longitude at sea, using clocks, and from this practical
perspective neither the simple pendulum nor the cycloidal pendulum was
good enough.5

But, exactly what is meant by the statement that the cycloidal pendulum
theoretically marks equal intervals of time? What does it mean to say that
intervals of time are theoretically equal? A diligent student who performs
a variety of experiments with the pendulum is bound to come around and
eventually ask the big question: how does one know that the pendulum is or is
not marking equal intervals of time? After all, most laboratory experiments
in school simply involve measuring time using a stop watch, so how does one
know that the stop watch is correct, and it is the pendulum that is wrong?
That is, what exactly is meant by equal intervals of time?

This is a question that ought to be addressed, at least at the undergradu-
ate level. Note that Newtonian mechanics is the theory which is used without
comment today to assert that Galileo was theoretically wrong and Huygens
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was theoretically right. However, note also that this theory came up long
after Galileo’s death, and that Galileo could conceivably have answered this
question in a way incompatible with Newtonian mechanics.

THE REFUTABILITY OF NEWTON’S ‘LAWS’ OF MOTION

Now, it is today recognized that Newton’s ‘laws’ of motion are not, by them-
selves, physics, since there is no clear cut way to refute them. However, it is
usually taught that Newton’s first ‘law of motion’ defines an inertial reference
frame, and the second law of motion defines the notion of ‘force’. How good
are these even as definitions? Specifically, how good are these definitions
in the absence of a definition of the notion of equal intervals of time (Raju
1994, 1991a, 2003)? Without a definition of the notion of equal intervals of
time, there is no way to check whether or not a body is in a state of uniform
motion, hence there is no way to determine whether or how much force is
acting on the body. For example, if a teenager’s pulse is used to define equal
intervals of time, the passing by of an attractive person of the opposite sex
is likely to lead to large forces!

According to Popper (1982), the refutability of Newtonian physics comes
about by combining the ‘laws of motion’ with the Newtonian ‘law of gravita-
tion’ (Raju 1991a), or the theory of falling bodies with the theory of planetary
motion. Thus, for example, on Galilean physics, the path of a stone thrown
in the air is a parabola, while it is usually an ellipse according to Newtonian
physics (although the small portion of the ellipse that is visible provides a
close approximation to the parabola). However, it is noticeable that the pro-
cedure suggested by Popper involves examining world lines (of planets) or
trajectories of particles (projectiles), without reference to time. That planets
move in elliptic orbits around the sun was, of course, believed to be true
prior to Newton (and prior to Kepler), so what the Newtonian theory must
be credited with is the unification of the theory of falling bodies with the
theory of planetary motion.

BARROW’S EVEN TENOR HYPOTHESIS

We note also that for Newton himself the definition of equal intervals of
time did not pose a problem. Newton’s teacher, Barrow, had devoted much
thought to time, and this was the topic with which he commenced his lec-
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tures on geometry. His opening volley (?)Barrow) was an ironic reference to
Augustine’s ‘very trite Saying’ (‘What, then, is time?’): ‘If no one asks me I
know; but if any Person should require me to tell him, I cannot.’ He thought
this escape route was not available to ‘Mathematicians’ since they ‘frequently
make use of Time, they ought to have a distinct Idea of the meaning of that
Word, otherwise they are Quacks’ !

He then introduced the even-tenor hypothesis, ‘whether things move. . . or
stand still; whether we sleep or wake, Time flows perpetually with an equal
Tenor.’ (Barrow 1976, p. 205) Barrow’s argument was that a quantity has
a reality independent of the means used to measure it.6 His other argument
was that the imperceptible need not be non-existent: ‘When we wake we
cannot perceive or tell how much Time has passed during our Sleep; which
is certainly true: But it cannot be justly inferr’d from thence: We do not
perceive the Thing, therefore there is no such Thing, that is a false Illusion,
a deceitful Dream, that woud cause us to join together two remote Instants
of Time.’(Barrow 1976, p. 205)[Italics original] 7

Since time flows in ‘an equal Channel, not by Starts’, it could be measured
only by a special class of motions, called ‘equal motions’, such as those of the
sun or moon, adapted for that purpose by ‘the divine Will of the Creator’.
Was there any reason, apart from ‘divine Testimony’, to call this an ‘equal
motion’? Barrow appeals to the principle of sufficient reason: these motions
could be compared using clocks, ‘as, for Instance, an Hour-Glass. . . because
the Water or Sand containd in it remain entirely the same as to Quantity,
Figure and Force of descending, and the Vessel that contains them, as likewise
the little Hole they run thro’ don’t undergo any Kind of Mutation, at least
in a short Space of Time, and the State of Air much the same; there is no
Manner of Reason for us not to allow the Times of every running out of the
Water or Sand to be equal.’ In short, Barrow’s formula for equal intervals of
time is that the same causes take the same time to produce the same effects.

NEWTON ON BARROW’S EVEN TENOR HYPOTHESIS

Newton simply accepted Barrow’s even tenor hypothesis. Newton stated that
he did ‘not define time, space, place, and motion, as being well known to all’
(Newton 1962), but sought to remove ‘certain prejudices’ amongst ‘com-
mon people’, by restating the even-tenor hypothesis: ‘Absolute, true, and
mathematical time, of itself, and from its own nature, flows equably without

11



relation to anything external, and by another name is called duration. . . ’
Newton readily conceded that any actual clock one might think of would

be erroneous. He granted that solar motion could not be used to measure
equal intervals of time, ‘For the natural days are truly unequal, though they
are commonly considered as equal, and used for a measure of time.’ What,
then, are ‘equal motions’? This requires an inertial frame, and the univer-
sality of gravitation makes Newton doubt the existence of any such ‘equal
motions’: ‘It may be, that there is no such thing as an equable motion. . . .
All motion may be accelerated and retarded. . . .’ So far as he is concerned,
this make no difference, for the flow of time has a reality independent of
the means used to measure it, for things endure all the same, ‘whether the
motions are swift or slow, or none at all’.

EQUAL INTERVALS OF TIME AND THE ORIGIN OF RELATIVITY

In any case, all this still does not tell us what is the theoretical definition
of equal intervals of time in Newtonian mechanics, and how one should go
about determining whether two intervals of time are equal or unequal. It is
perhaps not so well known that it was the absence of a definition of equal
intervals of time that created a crisis in reconciling Newtonian physics with
electrodynamics, at the turn of the previous century.

It was the resolution of this theoretical difficulty that led to the the-
ory of (special) relativity. Contrary to what is incorrectly stated in nu-
merous physics texts, the Michelson-Morley experiment was only of indirect
relevance—it was performed not to test the existence of the aether, or the
constancy of the speed of light, but only to discriminate between the aether
theories of Stokes and Fresnel. It came out in support of Stokes’ theory
(Raju 1991b). This experimental conclusion was theoretically unacceptable,
because the kind of motion visualised by Stokes was mathematically impos-
sible.8 Hence, Lorentz stated,

The difficulties which this [Stokes’] theory encounters in explain-
ing aberration seem too great for me to share this [Michelson’s]
opinion. (Lorentz et al. 1952, p. 4)

and went on to postulate length contraction as an alternative way to explain
the experimental conclusion.
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Poincaré recognized that this was an ad hoc hypothesis, and that the
central issue was the reconciliation between Newtonian mechanics and elec-
tromagnetic theory. Poincaré also recognized that the central feature in
this reconciliation was a definition of the notion of equal intervals of time,
or, equivalently, a notion of simultaneity. This was eventually achieved by
Poincaré’s criterion of convenience (Poincaré 1958). Poincaré acknowledged
that any definition of equal intervals of time would involve an element of
arbitrariness.

We have no direct intuition of the equality of two intervals of
time. Those persons who believe they possess this intuition are
dupes of an illusion. When I say, from noon to one the same time
passes as from two to three, what meaning has this affirmation?
The least reflection shows that by itself it has none at all. It will
only have that which I choose to give it, by a definition which
will certainly possess a certain degree of arbitrariness. (Poincaré
1958, p. 27) [Emphasis original]

To resolve this arbitrariness, he proposed the criterion of convenience
(which has been needlessly ridiculed by those who do not understand it).
According to this criterion, equal intervals of time ought be so defined as to
make the enunciation of physics as simple as possible.

The simultaneity of two events, or the order of their succession,
or the equality of two durations, are to be so defined that the
enunciation of the natural laws may be as simple as possible.
(Poincaré 1958, p. 36)

This directly led him to postulate the constancy of the speed of light.
(A photon bouncing between parallel mirrors hence marks equal intervals of
time.) The relativity of simultaneity and the consequent need for a clock to
measure length, follow as easy consequences of this postulate (Raju 1992).

However, from a practical point of view, the construction of a clock using
a bouncing photon requires parallel geodesics (assuming the geodesic hypoth-
esis). It is not clear in which part of the cosmos one can hope to find parallel
geodesics, and whether the parallelism endures for any length of time. To
put matters in another way: which physical clock is a proper clock? The
answer is not known.

Does there exist a proper clock? This remains one of the five important
unsolved problems related to time (Raju 1994, p. 208).
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Conclusions

1. The availability of numerical computing software like calcode today
allows the teaching and exploration of more realistic theoretical models
of pendulum motion closer to experimental conditions.

2. Galileo’s claim of the isochrony of the simple pendulum is no ‘wronger’
than Huygens’ claim of the the isochrony of the cycloidal pendulum:
from a practical point of view, both failed to solve the longitude prob-
lem of European navigation.

3. From a theoretical point of view, the very notion of equal intervals of
time has no real definition in Newtonian mechanics.

4. The need to unify Newtonian mechanics with electromagnetic theory
led, by Poincaré’s criterion of convenience, to the postulated constancy
of the speed of light, and the consequent definition of equal intervals of
time using a photon bouncing between parallel mirrors.

5. Such a proper clock might not exist in reality, so it may not be possible
to devise any practical method of accurately measuring time.

Notes
1The project report file may be downloaded from http://11PicsOfTime.com/pendulum.

pdf. Questions regarding the project may be sent directly to suvrat@physics.harvard.
edu

2calcode is a ‘calculator’ for ordinary differential equations (ODE), which accepts
symbolically defined ODE’s as input and provides a graphical output of their solution. It
also performs many common tasks of Newtonian physics which all relate to the numerical
solution of ODE’s. [See also Hairer et al. (1991).] A free evaluation version of this software
can be obtained by sending me an email. The Windows version will be developed, if there
is enough interest.

3 I should perhaps add that, in my childhood experiments with opening up watches, I
came across what seems to me a somewhat neater mechanism (which, of course, I did not
then understand, and am not sure I now recall correctly). The mechanism consisted of
suspending the pendulum between twin knife edges, each of which was backed by a spring.
As the pendulum moves, its motion pushes the knife edges in either direction, which retreat
along a cycloidal path (as I now reconstruct it). I imagine that this mechanism reduces
the friction due to the wrapping of the string around the arches, but I have not seen any
proper description or analysis of this in the literature, and investigating this would make
an interesting student project.
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4This is an interesting aspect of the Indian contribution to the study of time!
5This problem was specific to European techniques of navigation, using charts. In fact,

other ways then existed of determining longitude at sea, and these ways had long been
known to other traditions, and these are recounted, for example in the Laghu Bhaskar̄ıya
I.29 (Bhaskara I 629a), or Mahābhāskar̄ıya II.8, II.3–4 (Bhaskara I 629b), but though
Europeans had access to these texts by the 16th c. CE, they could not use these methods
because the one most easily usable at sea involved the size of the earth, and Europeans then
lacked a precise estimate of the size of the earth, which was long available in Indo-Arabic
sources. This estimate was lacking because of an ‘error’ made by Columbus. Hence, the
Portuguese banned the use of the globe aboard ships, from 1500, and Picard’s estimates
of 1672 were not initially credible to navigators.

6‘Magnitudes themselves are absolute Quantums Independent on all Kinds of Measure
tho’ indeed we cannot tell what their Quantity is, unless we measure them; so Time is
likewise a Quantum in itself, tho’ in Order to find the Quantity of it, we are obliged to
call in Motion to our Assistance.’ Barrow (1976, p. 204)

7 A similar argument was advanced earlier by Giordono Bruno.
8See Raju (1991b). Briefly, Stokes thought that the aether instead of passing through

the earth, as in Fresnel’s theory, was dragged along by the earth in its motion. To en-
sure that plane wave fronts remained plane, he required the motion of the aether to be
irrotational, and he also required it to be at rest relative to the earth. Such a flow was
mathematically impossible, because the irrotational flow of an incompressible fluid is a
potential flow. And the potential equation (Laplace equation) admits a unique solution if
the normal derivative is specified at the boundary (Neuman problem). The aether is a key
construct in the ancient Indian Nyāya-Vaíses.ika system, and related to their doctrine of
action by contact, as also in Descartes. Curiously, exactly these two hypothesis about the
possible motion of the aether relative to the earth were also used by Varāhamih̄ıra, in the
6th c. CE Pancsiddhāntikā, to contest Āryabhat.a’s claim that the earth rotated. If the
aether streams through the earth (as in Fresnel’s theory), Varāhamih̄ıra argues, clothes
on a clothesline would be blown off. If the aether in the vicinity of the earth is dragged
(as in Stokes’ theory) then, Varāhamih̄ıra reasons, at least the falcon which flies high in
the air would not be able to return to its nest. This notion of the aether is also found in
post-10th c. CE Arabic works attributed to Aristotle, and a paraphrase of these arguments
against the rotation of the earth is also found in the 11th c. CE Arabic works attributed
to ‘Claudius Ptolemy’.
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