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We saw that it is impossible to teach limits?

So, why are limits important?

Common answer: rigor.

Belief is that the use of limits makes calculus rigorous.

Calculus is taught for its practical value in physics and
engineering, while

limits are taught for rigor.
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Introduction

» We can easily form the difference quotient %,
» but as we take smaller and smaller values of Ax the
limit might fail to exist, or it might fail to be unique.

» The rigorous approach to calculus—also called
mathematical analysis—allows us to prove the existence
and uniqueness of limits.

» The mathematician believes this answer, and other

persons in the community of mathematicians may share
this belief.

» But how far is it true?
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Introduction

» | will argue that rigor = reliance on the arbitrary
decisions of those in mathematical authority.

» What the calculus student learns—ritualistic
manipulation of symbols, and obedience to
authority—is inherent to formal mathematics.

» Tomorrow | will look at arbitrariness in the notion of
proof.

> Today | look at arbitrariness in axioms and definitions,

» to demonstrate the arbitrariness in calculus from within
formal mathematics.
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» Historically, the construction of R by Dedekind cuts
involved Cantor's set theory.

» Let us try to understand why set theory is needed for
calculus.

» After the calculus came to Europe (in the 16th c.)
there were epistemic doubts about its validity.

» Mathematicians thought of summing an infinite series
by actually carrying out the sum,

» and this seemed a supertask (an infinite series of tasks).
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» Even the simplest set theoretic statement “let x € R”
involves a supertask.

» This involves the claim that it is possible to select and
specify a real number, in a way that singles it out
uniquely from an infinity of adjacent real numbers.

» This is a supertask.
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» Consider a real number such as 7 which has a decimal . )
. . . . (S eory an
expansion 3.14159. .. which neither terminates nor supertasks
recurs.

» This decimal expansion represents the number 7 as the
limit of an infinite series >_ a,.

» Summing this series term by term, or calculating
a1+ ap, a1+ a»+ as, ..., is a supertask, for it requires
us to perform an infinity of additions.

» The fastest computers today can manage teraflops, or
around 102 floating point additions per second.

» If we use this computer exclusively to add continuously
for a year: we can only go up to 10%° additions—still a
long way from infinity.
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» To specify just one real number involves a supertask.

» this is not a task which is physically every going to be
possible.

P But set theory allows us to do it metaphsyically.

» In fact, set theory allows us to specify an uncountable
infinity of real numbers!
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> Note that we must discriminate formal reals from the
traditional use of real numbers, such as 3.14 as an
approximation to ,

» which has a very old history, dating back to times when
European culture had not even begun.

» Such approximations are readily possible

P the question of a supertask arises only when we speak of
being able to specify the value of 7 exactly or uniquely.
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The use of R for calculus means that doubts about
supertasks,

which were earlier attached to the calculus,
got pushed into doubts about set theory.

From this perspective, Dedekind's real achievement was
that he pushed doubts about supertasks and infinity
away from nubers and into the domain of set theory.
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» From a practical perspective, this is an excellent bsdiiunriis

solution.

» It provides an easy escape route for most
mathematicians who rarely go beyond naive set theory.

» They can say that it is not their job ( “proof by territory
limitation™ ).

» they can say (as Paul Erdos nearly said), “so many
people believe it, they can't all be wrong can they?”
(proof by numbers”), etc.

» (For more details about such proofs, see the appendix
to my book The Eleven Pictures of Time, Sage, 2003.)
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were pushed out of what mathematicians regard as their
normal area of activity,

P and into set theory.
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Set theory and
supertasks

» Thus, with R, doubts about supertasks in the calculus
were pushed out of what mathematicians regard as their
normal area of activity,

P and into set theory.

» But were they resolved?
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» It has long been known that infinity brings in various
paradoxes. f:gsijyoxes of set
» A classic example is the Sanskrit $loka, the first verse of
the 1$3 Upanisad, “3¢ T9H&: THTHEH U TU0HE=
/ [N SN << ,'

» The second line says “if you remove the whole from the
whole, what remains is the whole".

» It was such paradoxes which made Descartes and
Galileo suspect the calculus when it first arrived in
Europe (as we will see in more detail, later on).
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A similar paradox was encountered in Christian tradition
a thousand years before Descartes.

Proclus (a commentator on the Elements) had argued
that the truths of mathematics were eternal, hence the
world itself must be eternal.

John Philoponus, in his Apology Against Proclus,
defended the idea that the world was created,

He argued that adding a day to eternity would not
change eternity. Hence, the world was not eternal.

Curiously, he had a different attitude towards the
eternal torture in hell which he thought awaited
non-Christians, a torture which he thought they would
experience for an eternity of time.
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» A similar double-standard is found today in set theory,
» but this is much harder to spot.
> Let us try.
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» Recall Russell's paradox. theory
> Let R = {x|x & x}.

Now, if R € R, then, by definition, we must have
ReR.

On the other hand, if R € R then, again, by definition,
we must have R ¢ R.

So, either way, we have a contradiction.
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» The way these contradictions are resolved in axiomatic thoory

set theory is peculiar.

> Take, for example, the von-Neumann-Bernays-Godel
(NBG) set theory.

» Here, a well-formed formula (of the sort used in
Russell's paradox) in general only defines a class.

> A set is defined as a class A for which 3 a class B, such
that A € B.
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» Russell's paradox is resolved in NBG by saying that the
Russell class is a class, not a set, for we cannot find a
class S such that R € S.

» The paradoxes of set theory apply to classes, not sets.

» Mathematicians can stick to sets and thus avoid the
paradoxes which are now (believed to be) confined to
classes.
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How can we be sure that all paradoxes of set theory are
resolved.

NBG includes classes which are paradoxical.

How can we be sure this does not make NBG
inconsistent?
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theory

» The consistency of NBG is not proven
> it is only widely believed among mathematicians.

» So, basing the calculus on R and NBG does not
guarantee the surety of the results.

> That's only a belief.
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P It is interesting to see how the belief in the consistency
of NBG is maintained. acoes of set
> By Godel's second incompleteness theorem, the
consistency of a consistent theory cannot be proven
within the theory.
» Therefore, to decide the consistency of set theory we
require metamathematics.
» The question is: what kind of metamathematics?

» Before answering this question, let us recall some
socially accepted results of metamathematics.
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» For a set X denote its cardinality by #(X).
» It may be proved (by contradiction) that oadores of aet
#(X) < #P(X). theory
» If the set X is finite, #(X) = n, then the binomial
expansion may be used to show that #(P(X)) = 2".
» Not clear what happens when X is infinite.
» Recall that Cantor’s continuum hypothesis states that if
Ny is the cardinality of the infinite set N of natural
numbers, and c is the cardinality of R then 2% = ¢,
» The metamathematical theorems of Godel and Cohen
showed that the continuum hypothesis (CH) implies
(but is not implied by) the axiom of choice.
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» The axiom of choice (AC): every set has a choice
function.

Paradoxes of set

» That is, if X is a set the elements of which are disT

nonempty sets, then there exists a function f with
domain X such that VA € X, f(A) € A.

» A choice function f for a set X allows us to pick an
individual element f(A) € A for each A € X.

» Equivalent is Zorn's Lemma: in a partially ordered set if
every chain is bounded above, then there must be at
least one maximal element,

» or Hausdorff maximality principle: in a partially ordered
set every chain is contained in a maximal chain etc.
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Paradoxes of set

» These are today part of the everyday equipment of theory
mathematical reasoning.

» The AC is needed to prove what are regarded as
everyday results today:

» the existence of a Lebesgue non-measurable set or
Tychonoff's theorem (that the product of compact sets
is compact) etc.

» Zorn's lemma is used to prove the Hahn-Banach
theorem etc.
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» However, the AC (and the existence of Lebesgue I
non-measurable sets) also leads to the Banach-Tarski theery
paradox.

> Namely, let A, B C R", with n > 3.
» Further, let A, B be bounded and have non-empty
interior.

» Then, there exist finite partitions of A, B, such that
A= Uf-(:l Ai, B= U,l'(:1 B;, and each A; is congruent
(under Euclidean motions) to B;.
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theory

» This paradox conflicts violently with geometric intuition,

» for it means that a ball in 3-dimensional space may be
broken into a finite number of non-overlapping pieces,

» which may be reassembled by rotation and translation

(without stretching) into two balls of the same volume
as the original.



Figure: The Banach-Tarski Paradox. A ball in 3-dimensional space
can be subdivided into a finite number of pieces which can be
reassembled into two balls of identical volume, without stretching,
and merely by means of rigid rotations and translations.
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» However, the metamathematical theorems of Godel and
Cohen showed that both the continuum hypothesis
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of NBG.
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» We look at the formal contrapositive:



The theorems of Godel and Cohen

v

such paradoxes created fears that AC may lead to
inconsistency of NBG.

However, the metamathematical theorems of Godel and
Cohen showed that both the continuum hypothesis
(CH) and AC are independent of the remaining axioms
of NBG.

Usually taken as reassurance about CH and AC.
We look at the formal contrapositive:

if set theory is inconsistent with AC, then it must be
inconsistent without AC.
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Paradoxes of set
theory

» To return to the original question.
> Metamathematics needed to prove consistency of NBG,
» But what kind of metamathematics?

» Specifically, can principles like AC and CH be admitted
in metamathematics?
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Deciding decidability S
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» By Godel's first incompleteness theorem, any formal
theory large enough to contain natural numbers Paradores of set
. .. . . . E=hy
contains a proposition asserting Its own negation
» which cannot hence be either proved or disproved
within the theory (if the theory is consistent; if it is
inconsistent, every statement is provable).
> However, if such a theory is decidable, then the
statement can be either proved or disproved within the
theory.
» That is, if set theory is decidable it must be
inconsistent.



Is set theory consistent?

» Decidability of a formal theory is usually understood in
the sense of recursive decidability.
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Paradoxes of set
theory

» Decidability of a formal theory is usually understood in
the sense of recursive decidability.

» But, why should we limit metamathematics to finite
recursion?

» Conjecture: Transfinite recursion (an easy consequence
of AC), makes set theory decidable (hence inconsistent).
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» Usually AC etc. are excluded from metamathematics on
the grounds that metamathematics should only use tP:erg:ﬂyMes of set
conservative techniques of proof.

» But if we distrust transfinite induction, why allow it in
set theory?

» And if we find it trustworthy, why not allow it also in
metamathematics?

» So, standard of proof in metamathematics # standard
of proof in mathematics. Why?

» The only answers is from mathematical authority. So
formal mathematics ultimately depends upon authority,
not reason.
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>

Use of limits in calculus does not guarantee any surety
in the results.

All it does is to push the doubts about supertasks into
the domain of set theory.

The consistency of set theory is not proven: it is
believed.

This belief is maintained by using two standards of
proof.

Infinite procedures (even AC) allowed for proofs in
mathematics, but disallowed in metamathematics.

This is a hypocritical social consensus among
authoritative Western mathematicians. ldeally, there
should be one standard of proof for both mathematics
and metamathematics.
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» Why is R needed for calculus?
» Conventional answer: because R is complete (as a
metric space).
Why R?

» The field of rational numbers Q is not.

> The usual algorithm for square-root extraction (first
stated by Aryabhata) gives for v/2 a sequence of
rational numbers 1.4, 1.41, 1.414, 1.4142, . ...

» This is a Cauchy sequence: for successive terms differ
only in the next decimal place,

> so the difference between the mth and nt" term can be
made less than 1079 where ¢ = min{m, n}.
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» However, this Cauchy sequence does not converge in

since QQ is not complete. Why R?
» The limit would be v/2, but easy to prove that there is

no rational number p such that p? = 2.
» From the construction of R as the set of equivalence

classes of Cauchy sequences in QQ, this does not happen

in R which is complete.

» What happens in a field larger than R?
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R has the Archimedean property (AP).
Namely, given x € R,x > 0, 4 n € N, such that x < n. Why R?
» Here, n=1+1+1---+1 (n times), is defined in any
ordered field (so AP makes sense in any ordered field).
» AP characterizes R. That is, R is the largest ordered
field with AP.

» Consequently, if we have an ordered field S D R, then
the AP must fail in S.

v
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» Such a field S in which the AP fails, must have both
infinities and infinitesimals.
» Thus, since the AP fails, we must have an x € S such Why 27

that x > n for all n € N.

» Such an x is what we intuitively understand as an
infinitely large number.

» Further, since S is an ordered field, this x must have a
multiplicative inverse % This must satisfy 0 < % < %
for all n € N.

> Thus, % corresponds to what we intuitively understand
as an infinitesimally small number.
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> Still possible to say that

lim — =0,
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but the limit would not be unique,
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» What would happen to limits in such a field?
> Still possible to say that
lim — =0,
n—oo N Why R?

but the limit would not be unique,
» for the infinitesimal % is another limit on the e-§
definition of limit,
» since
S-<is<l-0<e

> Note: we are here not talking about non-standard
analysis: the infinities and infinitesimals in the field S
do not arise merely at an intermediate stage: they are
“permanent”, so to say.
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C. K. Raju
This example also required for later philosophy of
zeroism.
Consider the set P of all polynomials with real
Why R?

coefficients, in one indeterminate,
P ={f(x Zax lai € Q, ap # 0}.

Define f(x) > 0 if f(x) > 0 for all sufficiently large x.
Likewise, define f > g if f — g > 0.

Since Q is a field, it is well known P must be an
integral domain.
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» Note that the AP fails in P.

» Thus, the unit element is the polynomial f(x) =1, and
if g(x) = x, we see that g(x) > n no matter what n we
choose. (x — n > 0).

» The integral domain P can be extended naturally to its
field of quotients S, consisting of all rational functions.
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Note that the AP fails in P.
Thus, the unit element is the polynomial f(x) =1, and
if g(x) = x, we see that g(x) > n no matter what n we
choose. (X - n> 0). Why R?

The integral domain P can be extended naturally to its
field of quotients S, consisting of all rational functions.

The formal quotient, such as =% is defined whenever
the denominator is a non-zero polynomlal, even though,
as a function, it may be infinite (or fail to be defined)
at a finite set of points (the roots of the denominator).
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Note that the AP fails in P.
Thus, the unit element is the polynomial f(x) =1, and
if g(x) = x, we see that g(x) > n no matter what n we
choose. (X - n> 0). Why R?

The integral domain P can be extended naturally to its
field of quotients S, consisting of all rational functions.

The formal quotient, such as =% is defined whenever
the denominator is a non-zero polynomlal, even though,
as a function, it may be infinite (or fail to be defined)
at a finite set of points (the roots of the denominator).

To avoid quibbles concerning the form %, we can define
two rational functions to be equivalent if they differ only
on a finite set of points. (This can happen also with

X(X 1) X(X 2))

equivalent formal quotients, e.g. and
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» Completeness unimportant

> Anyway, as we saw, limits do not exist in a field without
AP.

» That is, polynomial arithmetic, or Brahmagupta
arithmetic, is non-Archimedean, unlike integer
arithmetic.
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» As we will see in more detail later on, this is how the
calculus originally developed in India.

» Order counting (with rational functions) was used in
place of limits.

Why R?

P and it was acceptable that limits are not unique.

» Right now the question is only this: why do calculus in
R? why not use such an S which makes calculus easier
and more intuitive?

» The only answer is that conventional calculus teaching
uncritically imitates the European historical experience
of the calculus.
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P There are other practical reasons why it is necessary to
involve infinities and infinitesimals.

How to define the

» Classical (e-0) definition soon proved inadequate for derivative?
applications to physics.

» With this definition a differentiable function must be
continuous.

» So, a discontinuous function may not be differentiated.
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» But, in physics, there regularly arose the need to

differentiate discontinuous functions.

» The classical example of a discontinuous function is the

Heaviside function:

H(x)

0
1

if x <0
if x>0
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But, in physics, there regularly arose the need to
differentiate discontinuous functions.
The classical example of a discontinuous function is the
Heaviside function:

0 |f X < O How to define the

H(X) = . derivative?
1 ifx>0

Its derivative of this is the Dirac § function.

The Dirac ¢ had a sad childhood:

physicists denied that it was physical, and used it as
purely a mathematical artifice.

Mathematicians, on the other hand, considered it as
something non-mathematical and non-rigorous—a mere
construct used by physicists.
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Schwartz (theory of distributions),
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P> Heaviside, however, used it for electrical engineering.
» The resulting physical intuition was, however, soon
formahsed by How to define the

derivative?

» Sobolev,
» Schwartz (theory of distributions),

» by Gel'fand and Shilov in the theory of generalised
functions, and

» by Mikusinski in the operational calculus.



Schwartz theory

» In the Schwartz theory, one averages a function and
then differentiates it.

Calculus without
Limits

C. K. Raju

How to define the
derivative?



Calculus without

Schwartz theory Limits

C. K. Raju

» In the Schwartz theory, one averages a function and
then differentiates it.

» Formally, this corresponds to the formula for integration

by parts:
00 S How to define the
f/g e fg/ derivative?
—0oQ —0o0



Schwartz theory R T

C. K. Raju

» In the Schwartz theory, one averages a function and
then differentiates it.

» Formally, this corresponds to the formula for integration

by parts:
0 0 How to define the
f/g — fg/ . derivative?
—0oQ —0o0

» Here, f is the function (possibly discontinuous) which
one seeks to differentiate,



Calculus without

Schwartz theory Limits

C. K. Raju

» In the Schwartz theory, one averages a function and
then differentiates it.

» Formally, this corresponds to the formula for integration

by parts:
0 0 How to define the
f/g — fg/ derivative?
—0o0 —00

» Here, f is the function (possibly discontinuous) which
one seeks to differentiate,

» and the derivative f’ is now being defined by the right
hand side, where the derivative is transferred to



Calculus without

Schwartz theory Limits

>

| 2

C. K. Raju

In the Schwartz theory, one averages a function and
then differentiates it.

Formally, this corresponds to the formula for integration

by parts:
0 0 How to define the
f/g — fg/ derivative?
—0o0 —00

Here, f is the function (possibly discontinuous) which
one seeks to differentiate,

and the derivative f’ is now being defined by the right
hand side, where the derivative is transferred to

the test function g which is assumed to be infinitely
differentiable: g € C*.
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The test function g is usually assumed to be compactly
supported

or to vanish rapidly at infinity etc.,

so that the term fg vanishes at infinity,

How to define the
derivative?

and the above formula corresponds to the formula for
integration by parts.

This works equally well for functions of several
variables, and we can write

fe=—[ fg,
R Rr

for g € D(R"™) where D(R") is the space of compactly
supported and infinitely differentiable functions.
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» Formally, D(R") is a topological vector space with the
topology of uniform convergence on compacta to all
orders.

» Technically, this topology is obtained as follows.
» Take a sequence of compact sets K; such that K; is
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The space of test functions R

C. K. Raju

» Formally, D(R") is a topological vector space with the
topology of uniform convergence on compacta to all
orders.

» Technically, this topology is obtained as follows.
» Take a sequence of compact sets K; such that K; is
contained in the interior of Kiy1 and |Jo; Kj = R".
» On C°°(R") define the seminorms
pn(f) = max{|D*f(x)| x € Kn, |a| < N}.
» Here o = (a1, @2, ..., a,) is a multi-index, and
(s3] o Qp
o= ()" ()" (3]
oxq Oxa o\ Ox, .
» These seminorms py generate a vector topology on
C*°(R™), in which the space of compactly supported
test functions D is a closed subspace.

How to define the
derivative?
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Which derivative? R T

C. K. Raju
» The Schwartz theory requires that the integral be the
Lebesgue integral and not the Riemann integral.
> vv.|th the. Schwartz theory every integrable functions is How 1o define the
differentiable. derivative?

» ¢ definition of the limit and the corresponding
derivative was not “natural”.

P That was just a consensus among mathematicians,
which has changed, because the earlier definition was
not adequate for physics.
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Oddly enough, some people continue with both
definitions.

though both definitions cannot go together: if a

function admits both a classical derivative almost

everywhere and a Schwartz derivative, it is not

necessary that the two should agree. How to define the

E.g., the Heaviside function H(x) is differentiable
almost everywhere (i.e., except on a set of Lebesgue
measure zero), and the derivative H' = 0 almost
everywhere.

However, the Dirac delta is not the zero distribution,
since [ d(x)dx = 1.

Thus, for purposes of physics, we need to settle on one
of the two as the right definition, and clearly the
Schwartz definition is better than the older e-
definition.
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» However, using the Schwartz theory creates another
problem in the formulation of the basic differential
equations of physics

» the Schwartz theory reinterprets a function as a
functional on a function space.

How to define the
derivative?

» Hence, it is no longer possible to speak of the value
f(x) of the function f at a point x.

» This loss of point values already occurred in the
Lebesgue theory of integration.

» However, it has more serious consequences in the
Schwartz theory.

» Pointwise products of functions are no longer defined.
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» Pointwise product
fg(x) = f(x)g(x)
defined only in the special case where the functions f
and g are smooth (C*). How to define the

derivative?

» Possible to give a natural-looking definition of the
pointwise product when only one of the functions is C*°.

» Called the Schwartz product. If g is a distribution, and
f € C*, define

(fg, h) = (g, fh)
for all test functions h, where (f, h) = [ fh.

» If f € C* and h is a test function, f.h is again a test
function. Hence, the right hand side is well defined.
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» Schwartz proved that there does not exist a product of
distributions which

How to define the

> (a) agrees with the Schwartz product (defined above), derivative?
» (b) is associative (that is (fg)h = f(gh) for all

distributions f, g, h), and
» (c) satisfies the Leibniz rule (that is (fg)' = fg’ + f'g

for all distributions f, g).
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» Taub! asserted, “Fortunately, the product of such & K- Raw

distributions [as arise] is quite tractable”.
» Thus, for example, consider the Heaviside function 6.
>
6% = 0,
» Apply the “Leibniz" rule (for the derivative of a product |, i define the
of two functions) to conclude that derivative?

200 = ¢,

» Since ' = J, this can be rewritten as

2090 = 9,
which immediately tells us that
1
-6 = =-90.
2

'A. H. Taub, J. Math. Phys.,21 (1980) pp. 1423-31.
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» This is simple enough except that we also have

63 = o,
» from which, by the same logic, it would follow that Hou to defie the
30%0" = ¢
» Since
6% = 0,
this corresponds to
f-0 = 1~6.
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» However, infinities arise in quantum field theory (gft).
» The propagators of gft are fundamental solutions of the
Klein-Gordon and Dirac equations.
» Products of these propagators arise in the S-matrix How o define the
expa nsion i derivative?

» These products are Fourier transformed into
convolution integrals, which are divergent.

> If we apply this to 62 we see that

(525:3*3:1*1:/1200.
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C. K. Raju
» Problem today is not that a product cannot be defined.
» Many definitions have been given including one by this
author (1982)
» The problem is to select one definition from among the
40-odd definitions that have been proposed in the How to define the

literature.

» Quantum field theorists use the Hahn-Banach definition
useless for classical physics (shock waves).

» Mathematicians use Colombeau’s product useless for
physics (since it is both associative and satisfies the
Leibniz rule).

» What are the principles on which the choice is to be
decided?
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Which definition of the product? Limits

C. K. Raju
» One possibility is to use comparison theorems.
» However, Hahn-Banach product used in qgft has
8% = AS. Not comparable with Hormander's product
which does not define has 62 or with my product which _
defines 62 as an infinite distribution. How to define the

» Another possibility is to by social consensus among
authoritative mathematicians.

» This is decided by “other considerations”. Colombeau
product exactly like naive product of non-standard
distributions.

» Since associate law and Leibniz rule holds, it has a
problem as follows.
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Shock waves Limits

C. K. Raju
» For smooth fluid flows one can use either (a)

conservation of mass, momentum, and energy, or (b)

conservation of mass, momentum and entropy.
» This is no longer true for non-smooth flows involving

shocks. How to define the

derivative?

» (Here a shock is regarded as a surface of discontinuity.)

» Historically, Riemann made the mistake of choosing
form (b), and arrived at physically incorrect conditions
for shocks.

» The correct conditions, using (a) were given by Rankine
and Hugoniot.

» With the Colombeau theory, it is not possible to
discriminate between forms (a) and (b).
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» Calculus with limits is taught on grounds of rigor.
However, this purported rigor depends upon the
imposition of a variety of arbitrary choices.

» The choice of metamathematics is arbitrary.
Calculus with limits requires infinite procedures
(spertasks), incorporated in R which is constructed Conclusions
using axiomatic set theory, such as NBG. Supertasks
lead to paradoxes of set. Consistency of NBG can only
be proved or disproved in metamathematics. The
consistency is maintained by an arbitrary choice of
metamathematics: refusing to allow in
metamathematics the sort of infinite procedures for
proof that are admitted in NBG.
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» The choice of the number system underlying the
calculus is arbitrary. It is possible to do calculus more
intuitively in non-Archimedean fields larger than R.

Conclusions

» The definition of the derivative is arbitrary. The
classical e—4 definition of the derivative is not adequate
for physics, since the derivative of discontinuous
functions naturally arises in physics.
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» The definition of the product of distributions is
arbitrary The classical definition of derivative is usually
replace by the Schwartz definition which is incomplete
since it does not address the issue of products of
distributions. Colombeau's simplistic definition is today "™
being promoted by mathematical authority, although it
is inadequate and inappropriate for physics

> As seen by the fate of the classical definition of

derivative, ultimately mathematical definitions have to
be related to practical value not mathematical authority.
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