Paradoxes of set theory

Why ℝ?

How to define the derivative?

Conclusions

Calculus without Limits: the Theory

A Critique of Formal Mathematics Part 1: Axioms and Definitions

C. K. Raju

G. D. Parikh Centre for Excellence in Math Indian Institute of Education Mumbai University Kalina Campus Santacruz (E), Mumbai 400 098

Paradoxes of set theory

Why ℝ?

How to define the derivative?

Conclusions

Calculus without Limits: the Theory

A Critique of Formal Mathematics Part 1: Axioms and Definitions

C. K. Raju

G. D. Parikh Centre for Excellence in Math Indian Institute of Education Mumbai University Kalina Campus Santacruz (E), Mumbai 400 098

Introduction

Set theory and supertasks

aradoxes of set

/hy ℝ?

How to define the

Camalinatana

Why ℝ?

How to define the derivative?

Set theory and supertasks

Paradoxes of set theory

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set :heory

Why ℝ?

How to define the derivative?

Conclusions

Introduction

▶ We saw that it is impossible to teach limits?

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

Conclusions

200

- Calculus without Limits
 - C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Nhy \mathbb{R} ?

How to define the derivative?

- ▶ We saw that it is impossible to teach limits?
- ► So, why are limits important?

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why \mathbb{R}^{n}

How to define the derivative?

- ▶ We saw that it is impossible to teach limits?
- ► So, why are limits important?
- Common answer: rigor.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set heory

Why $\mathbb{R}?$

How to define the derivative?

- We saw that it is impossible to teach limits?
- ► So, why are limits important?
- ► Common answer: rigor.
- ▶ Belief is that the use of limits makes calculus rigorous.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

aradoxes of set heory

Why $\mathbb{R}?$

How to define the derivative?

- ▶ We saw that it is impossible to teach limits?
- So, why are limits important?
- Common answer: rigor.
- ▶ Belief is that the use of limits makes calculus rigorous.
- Calculus is taught for its practical value in physics and engineering, while

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set heory

Why ℝ?

How to define the derivative?

- We saw that it is impossible to teach limits?
- So, why are limits important?
- Common answer: rigor.
- ▶ Belief is that the use of limits makes calculus rigorous.
- Calculus is taught for its practical value in physics and engineering, while
- limits are taught for rigor.

Why limits?

contd.

▶ We can easily form the difference quotient $\frac{\Delta f}{\Delta x}$,

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set heory

Why ℝ?

How to define the derivative?

Why limits?

contd.

- ▶ We can easily form the difference quotient $\frac{\Delta f}{\Delta x}$,
- but as we take smaller and smaller values of Δx the limit might fail to exist, or it might fail to be unique.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set heory

Why ℝ?

How to define the derivative?

Why limits?

contd.

- ▶ We can easily form the difference quotient $\frac{\Delta f}{\Delta x}$,
- but as we take smaller and smaller values of Δx the limit might fail to exist, or it might fail to be unique.
- ► The rigorous approach to calculus—also called mathematical analysis—allows us to *prove* the existence and uniqueness of limits.

Calculus without Limits

C. K. Raju

Introduction

supertasks

Paradoxes of set heory

Why ℝ?

How to define the derivative?

but as we take smaller and smaller values of Δx the limit might fail to exist, or it might fail to be unique.

- ► The rigorous approach to calculus—also called mathematical analysis—allows us to *prove* the existence and uniqueness of limits.
- ► The mathematician believes this answer, and other persons in the community of mathematicians may share this belief.

Calculus without Limits

C. K. Raju

Introduction

supertasks

Paradoxes of set heory

Why ℝ?

How to define the derivative?

C. K. Raju

Introduction

supertasks

Paradoxes of set heory

Why ℝ?

How to define the derivative?

- ▶ We can easily form the difference quotient $\frac{\Delta f}{\Delta x}$,
- but as we take smaller and smaller values of Δx the limit might fail to exist, or it might fail to be unique.
- ► The rigorous approach to calculus—also called mathematical analysis—allows us to *prove* the existence and uniqueness of limits.
- ► The mathematician believes this answer, and other persons in the community of mathematicians may share this belief.
- But how far is it true?

What is rigor actually?

▶ I will argue that rigor = reliance on the arbitrary decisions of those in mathematical authority.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

'aradoxes ot set heory

Why \mathbb{R} ?

How to define the derivative?

Set theory and supertasks

Paradoxes of se theory

Why \mathbb{R} ?

How to define the derivative?

- ▶ I will argue that rigor = reliance on the arbitrary decisions of those in mathematical authority.
- What the calculus student learns—ritualistic manipulation of symbols, and obedience to authority—is inherent to formal mathematics.

supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- ▶ I will argue that rigor = reliance on the arbitrary decisions of those in mathematical authority.
- What the calculus student learns—ritualistic manipulation of symbols, and obedience to authority—is inherent to formal mathematics.
- Tomorrow I will look at arbitrariness in the notion of proof.

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- ▶ I will argue that rigor = reliance on the arbitrary decisions of those in mathematical authority.
- What the calculus student learns—ritualistic manipulation of symbols, and obedience to authority—is inherent to formal mathematics.
- Tomorrow I will look at arbitrariness in the notion of proof.
- Today I look at arbitrariness in axioms and definitions,

supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- ▶ I will argue that rigor = reliance on the arbitrary decisions of those in mathematical authority.
- What the calculus student learns—ritualistic manipulation of symbols, and obedience to authority—is inherent to formal mathematics.
- Tomorrow I will look at arbitrariness in the notion of proof.
- Today I look at arbitrariness in axioms and definitions,
- to demonstrate the arbitrariness in calculus from within formal mathematics.

Calculus without Limits

C. K. Raju

ntroduction

Set theory and supertasks

Paradoxes of set heory

Why ℝ?

How to define the derivative?

Conclusions

Set theory and supertasks

Set theory and supertasks

ightharpoonup Historically, the construction of $\mathbb R$ by Dedekind cuts involved Cantor's set theory.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

Set theory and supertasks

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

Conclusions

► Historically, the construction of \mathbb{R} by Dedekind cuts involved Cantor's set theory.

Let us try to understand why set theory is needed for calculus.

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

- ▶ Historically, the construction of \mathbb{R} by Dedekind cuts involved Cantor's set theory.
- Let us try to understand why set theory is needed for calculus.
- ► After the calculus came to Europe (in the 16th c.) there were epistemic doubts about its validity.

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- ▶ Historically, the construction of \mathbb{R} by Dedekind cuts involved Cantor's set theory.
- Let us try to understand why set theory is needed for calculus.
- After the calculus came to Europe (in the 16th c.) there were epistemic doubts about its validity.
- Mathematicians thought of summing an infinite series by actually carrying out the sum,

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- ▶ Historically, the construction of \mathbb{R} by Dedekind cuts involved Cantor's set theory.
- Let us try to understand why set theory is needed for calculus.
- After the calculus came to Europe (in the 16th c.) there were epistemic doubts about its validity.
- Mathematicians thought of summing an infinite series by actually carrying out the sum,
- and this seemed a supertask (an infinite series of tasks).

Set theory and supertasks contd.

Even the simplest set theoretic statement "let $x \in \mathbb{R}$ " involves a supertask.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set heory

Why \mathbb{R} ?

How to define the derivative?

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set :heory

Why ℝ?

How to define the derivative?

- Even the simplest set theoretic statement "let $x \in \mathbb{R}$ " involves a supertask.
- ► This involves the claim that it is possible to select and specify a real number, in a way that singles it out uniquely from an infinity of adjacent real numbers.

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

- Even the simplest set theoretic statement "let $x \in \mathbb{R}$ " involves a supertask.
- ➤ This involves the claim that it is possible to select and specify a real number, in a way that singles it out uniquely from an infinity of adjacent real numbers.
- This is a supertask.

An example

Consider a real number such as π which has a decimal expansion 3.14159... which neither terminates nor recurs.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

'aradoxes of set heory

Vhy ℝ?

How to define the derivative?

raradoxes of set heory

/Vhy ℝ?

How to define the derivative?

- Consider a real number such as π which has a decimal expansion 3.14159... which neither terminates nor recurs.
- This decimal expansion represents the number π as the limit of an infinite series $\sum a_n$.

theory

Why ℝ?

How to define the derivative?

- Consider a real number such as π which has a decimal expansion 3.14159...which neither terminates nor recurs.
- This decimal expansion represents the number π as the limit of an infinite series $\sum a_n$.
- Summing this series term by term, or calculating $a_1 + a_2$, $a_1 + a_2 + a_3$, ..., is a supertask, for it requires us to perform an infinity of additions.

theory

University of a

How to define the derivative?

- Consider a real number such as π which has a decimal expansion 3.14159... which neither terminates nor recurs.
- This decimal expansion represents the number π as the limit of an infinite series $\sum a_n$.
- Summing this series term by term, or calculating $a_1 + a_2$, $a_1 + a_2 + a_3$, ..., is a supertask, for it requires us to perform an infinity of additions.
- ► The fastest computers today can manage teraflops, or around 10¹² floating point additions per second.

theory

How to de

How to define the derivative?

Conclusion

An example

- Consider a real number such as π which has a decimal expansion 3.14159... which neither terminates nor recurs.
- This decimal expansion represents the number π as the limit of an infinite series $\sum a_n$.
- Summing this series term by term, or calculating $a_1 + a_2$, $a_1 + a_2 + a_3$, ..., is a supertask, for it requires us to perform an infinity of additions.
- ► The fastest computers today can manage teraflops, or around 10¹² floating point additions per second.
- ► If we use this computer exclusively to add continuously for a year: we can only go up to 10²⁰ additions—still a long way from infinity.

Set theory and supertasks

To specify just one real number involves a supertask.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Nhy ℝ?

How to define the derivative?

Conclusions

200

Set theory and supertasks

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set :heory

Why ℝ?

How to define the derivative?

- To specify just one real number involves a supertask.
- this is not a task which is physically every going to be possible.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set :heory

Why ℝ?

How to define the derivative?

- To specify just one real number involves a supertask.
- this is not a task which is physically every going to be possible.
- But set theory allows us to do it metaphsyically.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set :heory

Why ℝ?

How to define the derivative?

- To specify just one real number involves a supertask.
- this is not a task which is physically every going to be possible.
- ▶ But set theory allows us to do it metaphsyically.
- ▶ In fact, set theory allows us to specify an uncountable infinity of real numbers!

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

Conclusions

approximation to π ,

Note that we must discriminate formal reals from the traditional use of real numbers, such as 3.14 as an

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- Note that we must discriminate formal reals from the traditional use of real numbers, such as 3.14 as an approximation to π ,
- which has a very old history, dating back to times when European culture had not even begun.

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- Note that we must discriminate formal reals from the traditional use of real numbers, such as 3.14 as an approximation to π ,
- which has a very old history, dating back to times when European culture had not even begun.
- Such approximations are readily possible

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- Note that we must discriminate formal reals from the traditional use of real numbers, such as 3.14 as an approximation to π ,
- which has a very old history, dating back to times when European culture had not even begun.
- Such approximations are readily possible
- the question of a supertask arises only when we speak of being able to specify the value of π exactly or uniquely.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Vhy ℝ?

How to define the derivative?

Conclusions

ightharpoonup The use of $\mathbb R$ for calculus means that doubts about supertasks,

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- ightharpoonup The use of $\mathbb R$ for calculus means that doubts about supertasks,
- which were earlier attached to the calculus,

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- ▶ The use of \mathbb{R} for calculus means that doubts about supertasks,
- which were earlier attached to the calculus.
- got pushed into doubts about set theory.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why R?

How to define the derivative?

- The use of ℝ for calculus means that doubts about supertasks,
- which were earlier attached to the calculus,
- got pushed into doubts about set theory.
- ► From this perspective, Dedekind's real achievement was that he pushed doubts about supertasks and infinity away from nubers and into the domain of set theory.

Irrational proofs

► From a practical perspective, this is an excellent solution.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Vhy ℝ?

How to define the derivative?

Irrational proofs

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set heory

Why ℝ?

How to define the derivative?

Conclusions

From a practical perspective, this is an excellent solution.

It provides an easy escape route for most mathematicians who rarely go beyond naive set theory.

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- From a practical perspective, this is an excellent solution.
- It provides an easy escape route for most mathematicians who rarely go beyond naive set theory.
- ► They can say that it is not their job ("proof by territory limitation").

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- From a practical perspective, this is an excellent solution.
- It provides an easy escape route for most mathematicians who rarely go beyond naive set theory.
- ► They can say that it is not their job ("proof by territory limitation").
- they can say (as Paul Erdos nearly said), "so many people believe it, they can't all be wrong can they?" (proof by numbers"), etc.

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- From a practical perspective, this is an excellent solution.
- It provides an easy escape route for most mathematicians who rarely go beyond naive set theory.
- ► They can say that it is not their job ("proof by territory limitation").
- they can say (as Paul Erdos nearly said), "so many people believe it, they can't all be wrong can they?" (proof by numbers"), etc.
- ► (For more details about such proofs, see the appendix to my book The Eleven Pictures of Time, Sage, 2003.)

Sets and supertasks

Summary

Thus, with \mathbb{R} , doubts about supertasks in the calculus were pushed out of what mathematicians regard as their normal area of activity,

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

heory

Why ℝ?

How to define the derivative?

Sets and supertasks

Summary

- Thus, with \mathbb{R} , doubts about supertasks in the calculus were pushed out of what mathematicians regard as their normal area of activity,
- ▶ and into set theory.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

raradoxes of set heory

Why ℝ?

How to define the derivative?

Sets and supertasks

Summary

Thus, with \mathbb{R} , doubts about supertasks in the calculus were pushed out of what mathematicians regard as their normal area of activity,

- ▶ and into set theory.
- But were they resolved?

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

eory

Why ℝ?

How to define the derivative?

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

Conclusions

Paradoxes of set theory

Traditional paradoxes of infinity

▶ It has long been known that infinity brings in various paradoxes.

Calculus without Limits

C. K. Raju

Introduction

Set theory and

Paradoxes of set theory

Vhy ℝ?

How to define the derivative?

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- ▶ It has long been known that infinity brings in various paradoxes.
- A classic example is the Sanskrit śloka, the first verse of the Iśā Upaniśad, "ॐ पूर्णमदः पूर्णमिदम पूर्णात् पूर्णमुदच्यते / पूर्णस्य पूर्णमादाय पूर्णमेवावशिष्यते".

Paradoxes of set theory

Why ℝ?

derivative?

- It has long been known that infinity brings in various paradoxes.
- A classic example is the Sanskrit śloka, the first verse of the Isa Upanisad, "अ पूर्णमदः पूर्णमिदम पूर्णात् पूर्णमुदच्यते / पूर्णस्य पूर्णमादाय पूर्णमेवावशिष्यते".
- ► The second line says "if you remove the whole from the whole, what remains is the whole".

C. K. Raju

ntroduction

supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- It has long been known that infinity brings in various paradoxes.
- A classic example is the Sanskrit śloka, the first verse of the Isa Upanisad, "अ पूर्णमदः पूर्णमिदम पूर्णात् पूर्णमुदच्यते / पूर्णस्य पूर्णमादाय पूर्णमेवावशिष्यते".
- ► The second line says "if you remove the whole from the whole, what remains is the whole".
- It was such paradoxes which made Descartes and Galileo suspect the calculus when it first arrived in Europe (as we will see in more detail, later on).

a thousand years before Descartes.

A similar paradox was encountered in Christian tradition

Calculus without Limits

C. K. Raju

ntroduction

Set theory and supertasks

Paradoxes of set theory

/hy ℝ?

How to define the derivative?

Calculus without Limits

C. K. Raju

ntroduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

Conclusions

A similar paradox was encountered in Christian tradition a thousand years before Descartes.

▶ Proclus (a commentator on the *Elements*) had argued that the truths of mathematics were eternal, hence the world itself must be eternal.

Calculus without Limits

C. K. Raju

ntroduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- ► A similar paradox was encountered in Christian tradition a thousand years before Descartes.
- Proclus (a commentator on the *Elements*) had argued that the truths of mathematics were eternal, hence the world itself must be eternal.
- ▶ John Philoponus, in his *Apology Against Proclus*, defended the idea that the world was created,

Calculus without Limits

C. K. Raju

ntroduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- ► A similar paradox was encountered in Christian tradition a thousand years before Descartes.
- Proclus (a commentator on the *Elements*) had argued that the truths of mathematics were eternal, hence the world itself must be eternal.
- ▶ John Philoponus, in his *Apology Against Proclus*, defended the idea that the world was created,
- ► He argued that adding a day to eternity would not change eternity. Hence, the world was not eternal.

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- ➤ A similar paradox was encountered in Christian tradition a thousand years before Descartes.
- Proclus (a commentator on the *Elements*) had argued that the truths of mathematics were eternal, hence the world itself must be eternal.
- ▶ John Philoponus, in his *Apology Against Proclus*, defended the idea that the world was created,
- ► He argued that adding a day to eternity would not change eternity. Hence, the world was not eternal.
- Curiously, he had a different attitude towards the eternal torture in hell which he thought awaited non-Christians, a torture which he thought they would experience for an eternity of time.

The double standard

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

Conclusions

A similar double-standard is found today in set theory,

The double standard

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

- A similar double-standard is found today in set theory,
- but this is much harder to spot.

The double standard

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

- A similar double-standard is found today in set theory,
- but this is much harder to spot.
- Let us try.

Russell's paradox

► Recall Russell's paradox.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why R?

How to define the derivative?

Russell's paradox

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- ► Recall Russell's paradox.
- $\blacktriangleright \text{ Let } R = \{x | x \notin x\}.$

Russell's paradox

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

- Recall Russell's paradox.
- ▶ Let $R = \{x | x \notin x\}$.
- Now, if $R \notin R$, then, by definition, we must have $R \in R$.

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- ► Recall Russell's paradox.
- $\blacktriangleright \text{ Let } R = \{x | x \notin x\}.$
- Now, if $R \notin R$, then, by definition, we must have $R \in R$.
- ▶ On the other hand, if $R \in R$ then, again, by definition, we must have $R \notin R$.

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

- Recall Russell's paradox.
- $\blacktriangleright \text{ Let } R = \{x | x \notin x\}.$
- Now, if $R \notin R$, then, by definition, we must have $R \in R$.
- ▶ On the other hand, if $R \in R$ then, again, by definition, we must have $R \notin R$.
- So, either way, we have a contradiction.

The definition of a set

set theory is peculiar.

▶ The way these contradictions are resolved in axiomatic

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Vhy ℝ?

How to define the derivative?

Conclusions

200

The definition of a set

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- The way these contradictions are resolved in axiomatic set theory is peculiar.
- ► Take, for example, the von-Neumann-Bernays-Gödel (NBG) set theory.

The definition of a set

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- The way these contradictions are resolved in axiomatic set theory is peculiar.
- ► Take, for example, the von-Neumann-Bernays-Gödel (NBG) set theory.
- Here, a well-formed formula (of the sort used in Russell's paradox) in general only defines a class.

Why \mathbb{R} ?

derivative?

- The way these contradictions are resolved in axiomatic set theory is peculiar.
- ► Take, for example, the von-Neumann-Bernays-Gödel (NBG) set theory.
- Here, a well-formed formula (of the sort used in Russell's paradox) in general only defines a class.
- ▶ A set is defined as a class A for which \exists a class B, such that $A \in B$.

Resolution of Russell's paradox in NBG

▶ Russell's paradox is resolved in NBG by saying that the Russell class is a class, not a set, for we cannot find a class S such that $R \in S$.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

Resolution of Russell's paradox in NBG

- Russell's paradox is resolved in NBG by saying that the Russell class is a class, not a set, for we cannot find a class S such that $R \in S$.
- ▶ The paradoxes of set theory apply to classes, not sets.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

Resolution of Russell's paradox in NBG

Russell's paradox is resolved in NBG by saying that the Russell class is a class, not a set, for we cannot find a class S such that $R \in S$.

- ▶ The paradoxes of set theory apply to classes, not sets.
- Mathematicians can stick to sets and thus avoid the paradoxes which are now (believed to be) confined to classes.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

So are all paradoxes resolved?

resolved.

► How can we be sure that all paradoxes of set theory are

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

Conclusions

200

So are all paradoxes resolved?

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- How can we be sure that all paradoxes of set theory are resolved.
- ▶ NBG includes classes which are paradoxical.

So are all paradoxes resolved?

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

- How can we be sure that all paradoxes of set theory are resolved.
- ▶ NBG includes classes which are paradoxical.
- How can we be sure this does not make NBG inconsistent?

Why ℝ?

How to define the derivative?

► The consistency of NBG is not proven

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Vhy ℝ?

How to define the derivative?

- ► The consistency of NBG is not proven
- ▶ it is only widely believed among mathematicians.

C. K. Raju

Calculus without

Limits

Set theory and supertasks

Paradoxes of set theory

Nhy ℝ?

How to define the derivative?

- ► The consistency of NBG is not proven
- it is only widely believed among mathematicians.
- So, basing the calculus on \mathbb{R} and NBG does not guarantee the surety of the results.

ntroduction

Calculus without

Limits
C. K. Raju

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- ► The consistency of NBG is not proven
- ▶ it is only widely believed among mathematicians.
- So, basing the calculus on \mathbb{R} and NBG does not guarantee the surety of the results.
- ► That's only a belief.

Metamathematics

of NBG is maintained.

▶ It is interesting to see how the belief in the consistency

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

Conclusions

200

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- It is interesting to see how the belief in the consistency of NBG is maintained.
- By Gödel's second incompleteness theorem, the consistency of a consistent theory cannot be proven within the theory.

Why ℝ?

How to define the derivative?

- ▶ It is interesting to see how the belief in the consistency of NBG is maintained.
- By Gödel's second incompleteness theorem, the consistency of a consistent theory cannot be proven within the theory.
- ► Therefore, to decide the consistency of set theory we require metamathematics.

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- It is interesting to see how the belief in the consistency of NBG is maintained.
- By Gödel's second incompleteness theorem, the consistency of a consistent theory cannot be proven within the theory.
- ► Therefore, to decide the consistency of set theory we require metamathematics.
- The question is: what kind of metamathematics?

Set theory and

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- It is interesting to see how the belief in the consistency of NBG is maintained.
- By Gödel's second incompleteness theorem, the consistency of a consistent theory cannot be proven within the theory.
- ► Therefore, to decide the consistency of set theory we require metamathematics.
- The question is: what kind of metamathematics?
- Before answering this question, let us recall some socially accepted results of metamathematics.

Cantor's Continuum Hypothesis

▶ For a set X denote its cardinality by #(X).

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Vhy ℝ?

How to define the derivative?

Cantor's Continuum Hypothesis

- For a set X denote its cardinality by #(X).
- It may be proved (by contradiction) that #(X) < #P(X).

Calculus without Limits

C. K. Raju

Introduction

supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

Why ℝ?

How to define the derivative?

- For a set X denote its cardinality by #(X).
- ▶ It may be proved (by contradiction) that #(X) < #P(X).
- ▶ If the set X is finite, #(X) = n, then the binomial expansion may be used to show that $\#(P(X)) = 2^n$.

Why ℝ?

How to define the derivative?

- ▶ For a set X denote its cardinality by #(X).
- ▶ It may be proved (by contradiction) that #(X) < #P(X).
- ▶ If the set X is finite, #(X) = n, then the binomial expansion may be used to show that $\#(P(X)) = 2^n$.
- ▶ Not clear what happens when X is infinite.

Why ℝ?

How to define the derivative?

- For a set X denote its cardinality by #(X).
- ▶ It may be proved (by contradiction) that #(X) < #P(X).
- ▶ If the set X is finite, #(X) = n, then the binomial expansion may be used to show that $\#(P(X)) = 2^n$.
- ▶ Not clear what happens when *X* is infinite.
- ▶ Recall that Cantor's continuum hypothesis states that if \aleph_0 is the cardinality of the infinite set $\mathbb N$ of natural numbers, and c is the cardinality of $\mathbb R$ then $2^{\aleph_0} = c$.

Why ℝ?

How to define the derivative?

- ▶ For a set X denote its cardinality by #(X).
- ▶ It may be proved (by contradiction) that #(X) < #P(X).
- If the set X is finite, #(X) = n, then the binomial expansion may be used to show that $\#(P(X)) = 2^n$.
- ▶ Not clear what happens when *X* is infinite.
- ▶ Recall that Cantor's continuum hypothesis states that if \aleph_0 is the cardinality of the infinite set $\mathbb N$ of natural numbers, and c is the cardinality of $\mathbb R$ then $2^{\aleph_0} = c$.
- ► The metamathematical theorems of Gödel and Cohen showed that the continuum hypothesis (CH) implies (but is not implied by) the axiom of choice.

Axiom of Choice

► The axiom of choice (AC): every set has a choice function.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Vhy ℝ?

How to define the derivative?

Why ℝ?

How to define the derivative?

- ► The axiom of choice (AC): every set has a choice function.
- ▶ That is, if X is a set the elements of which are nonempty sets, then there exists a function f with domain X such that $\forall A \in X, f(A) \in A$.

Why $\mathbb{R}?$

How to define the derivative?

- The axiom of choice (AC): every set has a choice function.
- ▶ That is, if X is a set the elements of which are nonempty sets, then there exists a function f with domain X such that $\forall A \in X, f(A) \in A$.
- A choice function f for a set X allows us to pick an individual element $f(A) \in A$ for each $A \in X$.

Why ℝ?

How to define the derivative?

- The axiom of choice (AC): every set has a choice function.
- ▶ That is, if X is a set the elements of which are nonempty sets, then there exists a function f with domain X such that $\forall A \in X, f(A) \in A$.
- A choice function f for a set X allows us to pick an individual element $f(A) \in A$ for each $A \in X$.
- Equivalent is Zorn's Lemma: in a partially ordered set if every chain is bounded above, then there must be at least one maximal element,

Why ℝ?

How to define the derivative?

- The axiom of choice (AC): every set has a choice function.
- ▶ That is, if X is a set the elements of which are nonempty sets, then there exists a function f with domain X such that $\forall A \in X, f(A) \in A$.
- A choice function f for a set X allows us to pick an individual element $f(A) \in A$ for each $A \in X$.
- Equivalent is Zorn's Lemma: in a partially ordered set if every chain is bounded above, then there must be at least one maximal element,
- or Hausdorff maximality principle: in a partially ordered set every chain is contained in a maximal chain etc.

Axiom of choice contd.

These are today part of the everyday equipment of mathematical reasoning. Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- These are today part of the everyday equipment of mathematical reasoning.
- ► The AC is needed to prove what are regarded as everyday results today:

C. K. Raju

Introduction

supertasks

Paradoxes of set theory

Vhy ℝ?

How to define the derivative?

- These are today part of the everyday equipment of mathematical reasoning.
- ► The AC is needed to prove what are regarded as everyday results today:
- the existence of a Lebesgue non-measurable set or Tychonoff's theorem (that the product of compact sets is compact) etc.

Why \mathbb{R} ?

How to define the derivative?

- These are today part of the everyday equipment of mathematical reasoning.
- ► The AC is needed to prove what are regarded as everyday results today:
- the existence of a Lebesgue non-measurable set or Tychonoff's theorem (that the product of compact sets is compact) etc.
- Zorn's lemma is used to prove the Hahn-Banach theorem etc.

Banach-Tarski paradox

However, the AC (and the existence of Lebesgue non-measurable sets) also leads to the Banach-Tarski paradox. Calculus without Limits

C. K. Raju

Introduction

Set theory and

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

Why \mathbb{R} ?

How to define the derivative?

- However, the AC (and the existence of Lebesgue non-measurable sets) also leads to the Banach-Tarski paradox.
- ▶ Namely, let $A, B \subset \mathbb{R}^n$, with $n \ge 3$.

supertasks

Paradoxes of set theory

Why $\mathbb{R}?$

How to define the derivative?

- However, the AC (and the existence of Lebesgue non-measurable sets) also leads to the Banach-Tarski paradox.
- ▶ Namely, let $A, B \subset \mathbb{R}^n$, with $n \ge 3$.
- ► Further, let *A*, *B* be bounded and have non-empty interior.

Why ℝ?

derivative?

- However, the AC (and the existence of Lebesgue non-measurable sets) also leads to the Banach-Tarski paradox.
- ▶ Namely, let $A, B \subset \mathbb{R}^n$, with $n \ge 3$.
- ► Further, let *A*, *B* be bounded and have non-empty interior.
- ▶ Then, there exist finite partitions of A, B, such that $A = \bigcup_{i=1}^k A_i$, $B = \bigcup_{i=1}^k B_i$, and each A_i is congruent (under Euclidean motions) to B_i .

Banach-Tarski Paradox

contd

▶ This paradox conflicts violently with geometric intuition,

- for it means that a ball in 3-dimensional space may be broken into a finite number of non-overlapping pieces,
- which may be reassembled by rotation and translation (without stretching) into two balls of the same volume as the original.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

C. K. Raju

Introduction

et theory and

Paradoxes of set theory

Vhy ℝ?

How to define the derivative?

Conclusions

Figure: The Banach-Tarski Paradox. A ball in 3-dimensional space can be subdivided into a finite number of pieces which can be reassembled into two balls of identical volume, without stretching, and merely by means of rigid rotations and translations.

The theorems of Gödel and Cohen

such paradoxes created fears that AC may lead to inconsistency of NBG. Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Vhy ℝ?

How to define the derivative?

Why ℝ?

How to define the derivative?

- such paradoxes created fears that AC may lead to inconsistency of NBG.
- However, the metamathematical theorems of Gödel and Cohen showed that both the continuum hypothesis (CH) and AC are independent of the remaining axioms of NBG.

C. K. Raju

Introduction

supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- such paradoxes created fears that AC may lead to inconsistency of NBG.
- However, the metamathematical theorems of Gödel and Cohen showed that both the continuum hypothesis (CH) and AC are independent of the remaining axioms of NBG.
- Usually taken as reassurance about CH and AC.

supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- such paradoxes created fears that AC may lead to inconsistency of NBG.
- However, the metamathematical theorems of Gödel and Cohen showed that both the continuum hypothesis (CH) and AC are independent of the remaining axioms of NBG.
- Usually taken as reassurance about CH and AC.
- ▶ We look at the formal contrapositive:

Why ℝ?

How to define the derivative?

- such paradoxes created fears that AC may lead to inconsistency of NBG.
- However, the metamathematical theorems of Gödel and Cohen showed that both the continuum hypothesis (CH) and AC are independent of the remaining axioms of NBG.
- Usually taken as reassurance about CH and AC.
- ▶ We look at the formal contrapositive:
- ▶ if set theory is inconsistent with AC, then it must be inconsistent without AC.

► To return to the original question.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Vhy ℝ?

How to define the derivative?

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Nhy ℝ?

How to define the derivative?

- ► To return to the original question.
- Metamathematics needed to prove consistency of NBG,

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- ► To return to the original question.
- Metamathematics needed to prove consistency of NBG,
- ▶ But what kind of metamathematics?

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Vhy ℝ?

How to define the derivative?

- To return to the original question.
- Metamathematics needed to prove consistency of NBG,
- ▶ But what kind of metamathematics?
- Specifically, can principles like AC and CH be admitted in metamathematics?

Deciding decidability

By Gödel's first incompleteness theorem, any formal theory large enough to contain natural numbers contains a proposition asserting its own negation Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

Why \mathbb{R} ?

How to define the derivative?

- By Gödel's first incompleteness theorem, any formal theory large enough to contain natural numbers contains a proposition asserting its own negation
- which cannot hence be either proved or disproved within the theory (if the theory is consistent; if it is inconsistent, every statement is provable).

Why ℝ?

How to define the derivative?

- By Gödel's first incompleteness theorem, any formal theory large enough to contain natural numbers contains a proposition asserting its own negation
- which cannot hence be either proved or disproved within the theory (if the theory is consistent; if it is inconsistent, every statement is provable).
- However, if such a theory is decidable, then the statement can be either proved or disproved within the theory.

Why \mathbb{R} ?

How to define the derivative?

- By Gödel's first incompleteness theorem, any formal theory large enough to contain natural numbers contains a proposition asserting its own negation
- which cannot hence be either proved or disproved within the theory (if the theory is consistent; if it is inconsistent, every statement is provable).
- However, if such a theory is decidable, then the statement can be either proved or disproved within the theory.
- ► That is, if set theory is decidable it must be inconsistent.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

Conclusions

▶ Decidability of a formal theory is usually understood in

the sense of recursive decidability.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

- Decidability of a formal theory is usually understood in the sense of recursive decidability.
- But, why should we limit metamathematics to finite recursion?

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- Decidability of a formal theory is usually understood in the sense of recursive decidability.
- But, why should we limit metamathematics to finite recursion?
- Conjecture: Transfinite recursion (an easy consequence of AC), makes set theory decidable (hence inconsistent).

Usually AC etc. are excluded from metamathematics on the grounds that metamathematics should only use conservative techniques of proof. Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Nhy ℝ?

How to define the derivative?

Why ℝ?

How to define the derivative?

- Usually AC etc. are excluded from metamathematics on the grounds that metamathematics should only use conservative techniques of proof.
- But if we distrust transfinite induction, why allow it in set theory?

Usually AC etc. are excluded from metamathematics on the grounds that metamathematics should only use conservative techniques of proof.

- But if we distrust transfinite induction, why allow it in set theory?
- ► And if we find it trustworthy, why not allow it also in metamathematics?

Calculus without Limits

C. K. Raju

Introduction

supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

Why ℝ?

How to define the derivative?

- Usually AC etc. are excluded from metamathematics on the grounds that metamathematics should only use conservative techniques of proof.
- But if we distrust transfinite induction, why allow it in set theory?
- And if we find it trustworthy, why not allow it also in metamathematics?
- So, standard of proof in metamathematics ≠ standard of proof in mathematics. Why?

Why ℝ?

How to define the derivative?

- Usually AC etc. are excluded from metamathematics on the grounds that metamathematics should only use conservative techniques of proof.
- But if we distrust transfinite induction, why allow it in set theory?
- And if we find it trustworthy, why not allow it also in metamathematics?
- So, standard of proof in metamathematics ≠ standard of proof in mathematics. Why?
- The only answers is from mathematical authority. So formal mathematics ultimately depends upon authority, not reason.

Interim summary

in the results.

Use of limits in calculus does not guarantee any surety

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

/hy ℝ?

How to define the derivative?

Interim summary

- Calculus without Limits
 - C. K. Raju
- Introduction
- Set theory and supertasks

Paradoxes of set theory

Vhy ℝ?

How to define the lerivative?

- Use of limits in calculus does not guarantee any surety in the results
- ▶ All it does is to push the doubts about supertasks into the domain of set theory.

Why ℝ?

How to define the derivative?

- ▶ Use of limits in calculus does not guarantee any surety in the results.
- ▶ All it does is to push the doubts about supertasks into the domain of set theory.
- ► The consistency of set theory is not proven: it is believed.

Why ℝ?

How to define the derivative?

- Use of limits in calculus does not guarantee any surety in the results.
- ▶ All it does is to push the doubts about supertasks into the domain of set theory.
- ► The consistency of set theory is not proven: it is believed.
- This belief is maintained by using two standards of proof.

Why ℝ?

How to define the derivative?

- Use of limits in calculus does not guarantee any surety in the results.
- ▶ All it does is to push the doubts about supertasks into the domain of set theory.
- The consistency of set theory is not proven: it is believed.
- This belief is maintained by using two standards of proof.
- ► Infinite procedures (even AC) allowed for proofs in mathematics, but disallowed in metamathematics.

Why ℝ?

How to define the derivative?

- Use of limits in calculus does not guarantee any surety in the results.
- ▶ All it does is to push the doubts about supertasks into the domain of set theory.
- The consistency of set theory is not proven: it is believed.
- This belief is maintained by using two standards of proof.
- ► Infinite procedures (even AC) allowed for proofs in mathematics, but disallowed in metamathematics.
- ► This is a hypocritical social consensus among authoritative Western mathematicians. Ideally, there should be one standard of proof for both mathematics and metamathematics.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

Conclusions

Why \mathbb{R} ?

Completeness of $\ensuremath{\mathbb{R}}$

ightharpoonup Why is $\mathbb R$ needed for calculus?

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

Completeness of $\mathbb R$

- Calculus without Limits C. K. Raju
- and the second
- Set theory and supertasks
 - Paradoxes of set heory

Why \mathbb{R} ?

How to define th derivative?

- ightharpoonup Why is $\mathbb R$ needed for calculus?
- ▶ Conventional answer: because \mathbb{R} is complete (as a metric space).

Completeness of $\mathbb R$

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

heory

Why \mathbb{R} ?

How to define th derivative?

- ightharpoonup Why is $\mathbb R$ needed for calculus?
- Conventional answer: because \mathbb{R} is complete (as a metric space).
- ► The field of rational numbers Q is not.

heory

Why \mathbb{R} ?

How to define the derivative?

- ightharpoonup Why is $\mathbb R$ needed for calculus?
- Conventional answer: because ℝ is complete (as a metric space).
- ► The field of rational numbers Q is not.
- ▶ The usual algorithm for square-root extraction (first stated by Āryabhaṭa) gives for $\sqrt{2}$ a sequence of rational numbers 1.4, 1.41, 1.414, 1.4142,

Why \mathbb{R} ?

How to define the derivative?

- ightharpoonup Why is $\mathbb R$ needed for calculus?
- Conventional answer: because ℝ is complete (as a metric space).
- ► The field of rational numbers Q is not.
- The usual algorithm for square-root extraction (first stated by Āryabhaṭa) gives for $\sqrt{2}$ a sequence of rational numbers 1.4, 1.41, 1.414, 1.4142,
- ➤ This is a Cauchy sequence: for successive terms differ only in the next decimal place,

Why \mathbb{R} ?

How to define the derivative?

- ightharpoonup Why is $\mathbb R$ needed for calculus?
- Conventional answer: because ℝ is complete (as a metric space).
- ► The field of rational numbers Q is not.
- The usual algorithm for square-root extraction (first stated by Āryabhaṭa) gives for $\sqrt{2}$ a sequence of rational numbers 1.4, 1.41, 1.414, 1.4142,
- This is a Cauchy sequence: for successive terms differ only in the next decimal place,
- ▶ so the difference between the m^{th} and n^{th} term can be made less than 10^{-q} where $q = \min\{m, n\}$.

Completeness of $\mathbb R$

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of se theory

Why \mathbb{R} ?

How to define the derivative?

Conclusions

▶ However, this Cauchy sequence does not converge in $\mathbb Q$ since $\mathbb Q$ is not complete.

Why \mathbb{R} ?

How to define the derivative?

- ► However, this Cauchy sequence does not converge in ℚ since ℚ is not complete.
- ▶ The limit would be $\sqrt{2}$, but easy to prove that there is no rational number p such that $p^2 = 2$.

Why \mathbb{R} ?

derivative?

- ► However, this Cauchy sequence does not converge in Q since Q is not complete.
- ► The limit would be $\sqrt{2}$, but easy to prove that there is no rational number p such that $p^2 = 2$.
- From the construction of $\mathbb R$ as the set of equivalence classes of Cauchy sequences in $\mathbb Q$, this does not happen in $\mathbb R$ which is complete.

Why \mathbb{R} ?

How to define the derivative?

- ► However, this Cauchy sequence does not converge in Q since Q is not complete.
- ► The limit would be $\sqrt{2}$, but easy to prove that there is no rational number p such that $p^2 = 2$.
- From the construction of $\mathbb R$ as the set of equivalence classes of Cauchy sequences in $\mathbb Q$, this does not happen in $\mathbb R$ which is complete.
- ightharpoonup What happens in a field larger than \mathbb{R} ?

Archimedean Property

 $ightharpoonup \mathbb{R}$ has the Archimedean property (AP).

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set heory

Why \mathbb{R} ?

How to define the derivative?

Archimedean Property

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

aradoxes of set heory

Why \mathbb{R} ?

How to define the derivative?

- $ightharpoonup \mathbb{R}$ has the Archimedean property (AP).
- ▶ Namely, given $x \in \mathbb{R}, x \ge 0$, $\exists n \in \mathbb{N}$, such that x < n.

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

- $ightharpoonup \mathbb{R}$ has the Archimedean property (AP).
- ▶ Namely, given $x \in \mathbb{R}, x \ge 0$, $\exists n \in \mathbb{N}$, such that x < n.
- Here, $n = 1 + 1 + 1 + \cdots + 1$ (n times), is defined in any ordered field (so AP makes sense in any ordered field).

Paradoxes of set heory

Why \mathbb{R} ?

How to define the derivative?

- $ightharpoonup \mathbb{R}$ has the Archimedean property (AP).
- ▶ Namely, given $x \in \mathbb{R}, x \ge 0$, $\exists n \in \mathbb{N}$, such that x < n.
- Here, $n = 1 + 1 + 1 + \cdots + 1$ (n times), is defined in any ordered field (so AP makes sense in any ordered field).
- AP characterizes \mathbb{R} . That is, \mathbb{R} is the largest ordered field with AP.

supertasks

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

- $ightharpoonup \mathbb{R}$ has the Archimedean property (AP).
- ▶ Namely, given $x \in \mathbb{R}, x \ge 0$, $\exists n \in \mathbb{N}$, such that x < n.
- Here, $n = 1 + 1 + 1 + \cdots + 1$ (n times), is defined in any ordered field (so AP makes sense in any ordered field).
- AP characterizes \mathbb{R} . That is, \mathbb{R} is the largest ordered field with AP.
- ▶ Consequently, if we have an ordered field $\mathbb{S} \supset \mathbb{R}$, then the AP must fail in \mathbb{S} .

Infinities and infinitesimals in an ordered field

➤ Such a field S in which the AP fails, must have both infinities and infinitesimals.

Calculus without Limits

C. K. Raju

Introduction

Set theory and

Paradoxes of set

Why \mathbb{R} ?

How to define the derivative?

Infinities and infinitesimals in an ordered field

- ➤ Such a field S in which the AP fails, must have both infinities and infinitesimals.
- ▶ Thus, since the AP fails, we must have an $x \in \mathbb{S}$ such that x > n for all $n \in \mathbb{N}$.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set

Why \mathbb{R} ?

How to define the derivative?

Infinities and infinitesimals in an ordered field

► Such a field S in which the AP fails, must have both

- infinities and infinitesimals.
- Thus, since the AP fails, we must have an $x \in \mathbb{S}$ such that x > n for all $n \in \mathbb{N}$.
- Such an x is what we intuitively understand as an infinitely large number.

Calculus without Limits

C. K. Raju

Introduction

supertasks

theory

Why \mathbb{R} ?

How to define the derivative?

Why \mathbb{R} ?

How to define the derivative?

- ➤ Such a field S in which the AP fails, must have both infinities and infinitesimals.
- ▶ Thus, since the AP fails, we must have an $x \in \mathbb{S}$ such that x > n for all $n \in \mathbb{N}$.
- Such an x is what we intuitively understand as an infinitely large number.
- ▶ Further, since $\mathbb S$ is an ordered field, this x must have a multiplicative inverse $\frac{1}{x}$. This must satisfy $0 < \frac{1}{x} < \frac{1}{n}$ for all $n \in \mathbb N$.

Why \mathbb{R} ?

How to define the derivative?

Canalinatana

- ➤ Such a field S in which the AP fails, must have both infinities and infinitesimals.
- ▶ Thus, since the AP fails, we must have an $x \in \mathbb{S}$ such that x > n for all $n \in \mathbb{N}$.
- Such an x is what we intuitively understand as an infinitely large number.
- ▶ Further, since $\mathbb S$ is an ordered field, this x must have a multiplicative inverse $\frac{1}{x}$. This must satisfy $0 < \frac{1}{x} < \frac{1}{n}$ for all $n \in \mathbb N$.
- Thus, $\frac{1}{x}$ corresponds to what we intuitively understand as an infinitesimally small number.

Limits in a field without AP

▶ What would happen to limits in such a field?

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of se theory

Why \mathbb{R} ?

How to define the derivative?

Limits in a field without AP

- ▶ What would happen to limits in such a field?
- ► Still possible to say that

$$\lim_{n\to\infty}\frac{1}{n}=0,$$

but the limit would not be unique,

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

theory

Why \mathbb{R} ?

How to define the derivative?

Paradoxes of theory

Why \mathbb{R} ?

How to define the derivative?

Conclusions

- ▶ What would happen to limits in such a field?
- ► Still possible to say that

$$\lim_{n\to\infty}\frac{1}{n}=0,$$

but the limit would not be unique,

• for the infinitesimal $\frac{1}{x}$ is another limit on the ϵ - δ definition of limit,

Paradoxes of theory

Why \mathbb{R} ?

How to define the derivative?

Conclusions

- ▶ What would happen to limits in such a field?
- ► Still possible to say that

$$\lim_{n\to\infty}\frac{1}{n}=0,$$

but the limit would not be unique,

- for the infinitesimal $\frac{1}{x}$ is another limit on the ϵ - δ definition of limit,
- since

$$\left|\frac{1}{n}-\frac{1}{x}\right|<\frac{1}{n}\leq\left|\frac{1}{n}-0\right|<\epsilon.$$

- ▶ What would happen to limits in such a field?
- ► Still possible to say that

$$\lim_{n\to\infty}\frac{1}{n}=0,$$

but the limit would not be unique,

- for the infinitesimal $\frac{1}{x}$ is another limit on the ϵ - δ definition of limit,
- since

$$\left|\frac{1}{n} - \frac{1}{x}\right| < \frac{1}{n} \le \left|\frac{1}{n} - 0\right| < \epsilon.$$

Note: we are here not talking about non-standard analysis: the infinities and infinitesimals in the field S do not arise merely at an intermediate stage: they are "permanent", so to say.

Example of an ordered field without AP

This example also required for later philosophy of zeroism.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

'aradoxes of set heory

Why \mathbb{R} ?

How to define the derivative?

Example of an ordered field without AP

- This example also required for later philosophy of zeroism.
- Consider the set P of all polynomials with real coefficients, in one indeterminate,

$$P = \{f(x) = \sum_{i=0}^{n} a_i x^i \mid |a_i \in \mathbb{Q}, a_n \neq 0\}.$$

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

theory

Why \mathbb{R} ?

How to define the derivative?

Why \mathbb{R} ?

How to define the derivative?

Conclusions

- This example also required for later philosophy of zeroism.
- ► Consider the set *P* of all polynomials with real coefficients, in one indeterminate,

$$P = \{f(x) = \sum_{i=0}^{n} a_i x^i \mid |a_i \in \mathbb{Q}, a_n \neq 0\}.$$

▶ Define f(x) > 0 if f(x) > 0 for all sufficiently large x.

Why \mathbb{R} ?

How to define the derivative?

- This example also required for later philosophy of zeroism.
- ► Consider the set *P* of all polynomials with real coefficients, in one indeterminate,

$$P = \{f(x) = \sum_{i=0}^{n} a_i x^i \mid |a_i \in \mathbb{Q}, a_n \neq 0\}.$$

- ▶ Define f(x) > 0 if f(x) > 0 for all sufficiently large x.
- ▶ Likewise, define f > g if f g > 0.

Why \mathbb{R} ?

How to define the derivative?

- This example also required for later philosophy of zeroism.
- Consider the set P of all polynomials with real coefficients, in one indeterminate,

$$P = \{f(x) = \sum_{i=0}^{n} a_i x^i \mid |a_i \in \mathbb{Q}, a_n \neq 0\}.$$

- ▶ Define f(x) > 0 if f(x) > 0 for all sufficiently large x.
- ▶ Likewise, define f > g if f g > 0.
- Since ℚ is a field, it is well known P must be an integral domain.

example of an ordered field without AP

Note that the AP fails in P.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set heory

Why \mathbb{R} ?

How to define the derivative?

example of an ordered field without AP

- Note that the AP fails in P.
- Thus, the unit element is the polynomial f(x) = 1, and if g(x) = x, we see that g(x) > n no matter what n we choose. (x n > 0).

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

Paradoxes of se theory

Why \mathbb{R} ?

How to define the derivative?

- ▶ Note that the AP fails in P.
- Thus, the unit element is the polynomial f(x) = 1, and if g(x) = x, we see that g(x) > n no matter what n we choose. (x n > 0).
- ▶ The integral domain P can be extended naturally to its field of quotients \mathbb{S} , consisting of all rational functions.

Note that the AP fails in P.

example of an ordered field without AP

- ▶ Thus, the unit element is the polynomial f(x) = 1, and if g(x) = x, we see that g(x) > n no matter what n we choose. (x - n > 0).
- ▶ The integral domain P can be extended naturally to its field of quotients \mathbb{S} , consisting of all rational functions.
- ► The formal quotient, such as $\frac{x-2}{x-3}$ is defined whenever the denominator is a non-zero polynomial, even though, as a function, it may be infinite (or fail to be defined) at a finite set of points (the roots of the denominator).

Why ℝ?

Why ℝ?

example of an ordered field without AP contd

- Note that the AP fails in P.
- ▶ Thus, the unit element is the polynomial f(x) = 1, and if g(x) = x, we see that g(x) > n no matter what n we choose. (x - n > 0).
- ▶ The integral domain P can be extended naturally to its field of quotients \mathbb{S} , consisting of all rational functions.
- ► The formal quotient, such as $\frac{x-2}{x-3}$ is defined whenever the denominator is a non-zero polynomial, even though, as a function, it may be infinite (or fail to be defined) at a finite set of points (the roots of the denominator).
- ▶ To avoid quibbles concerning the form $\frac{0}{0}$, we can define two rational functions to be equivalent if they differ only on a finite set of points. (This can happen also with equivalent formal quotients, e.g. $\frac{x(x-1)}{y-1}$ and $\frac{x(x-2)}{y-2}$.)

Completeness unimportant

Completeness unimportant

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

heory

Why \mathbb{R} ?

How to define the derivative?

Conclusions

200

Completeness unimportant

Calculus without Limits

C. K. Raju

Introduction

supertasks

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

- Completeness unimportant
- Anyway, as we saw, limits do not exist in a field without AP.

Completeness unimportant

Calculus without Limits

C. K. Raju

Introduction

supertasks

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

- ► Completeness unimportant
- Anyway, as we saw, limits do not exist in a field without AP.
- That is, polynomial arithmetic, or Brahmagupta arithmetic, is non-Archimedean, unlike integer arithmetic.

Interim summary

As we will see in more detail later on, this is how the calculus originally developed in India.

Calculus without Limits

C. K. Raju

Introduction

Set theory and

Paradoxes of set heorv

Why \mathbb{R} ?

How to define the derivative?

Interim summary

Calculus without Limits

C. K. Raju

Introduction

supertasks

theory

Why \mathbb{R} ?

How to define the derivative?

Conclusions

As we will see in more detail later on, this is how the calculus originally developed in India.

Order counting (with rational functions) was used in place of limits.

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

- As we will see in more detail later on, this is how the calculus originally developed in India.
- Order counting (with rational functions) was used in place of limits.
- and it was acceptable that limits are not unique.

Why \mathbb{R} ?

How to define the derivative?

- As we will see in more detail later on, this is how the calculus originally developed in India.
- Order counting (with rational functions) was used in place of limits.
- and it was acceptable that limits are not unique.
- ▶ Right now the question is only this: why do calculus in R? why not use such an S which makes calculus easier and more intuitive?

Why \mathbb{R} ?

How to define the derivative?

- As we will see in more detail later on, this is how the calculus originally developed in India.
- Order counting (with rational functions) was used in place of limits.
- and it was acceptable that limits are not unique.
- ▶ Right now the question is only this: why do calculus in R? why not use such an S which makes calculus easier and more intuitive?
- The only answer is that conventional calculus teaching uncritically imitates the European historical experience of the calculus.

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

Conclusions

How to define the derivative?

involve infinities and infinitesimals.

▶ There are other practical reasons why it is necessary to

Calculus without Limits

C. K. Raju

ntroduction

Set theory and supertasks

neory

Why ℝ?

How to define the derivative?

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

theory

Why ℝ?

How to define the derivative?

Conclusions

► There are other practical reasons why it is necessary to involve infinities and infinitesimals.

► Classical $(\epsilon - \delta)$ definition soon proved inadequate for applications to physics.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

heory

Why ℝ?

How to define the derivative?

- ► There are other practical reasons why it is necessary to involve infinities and infinitesimals.
- ► Classical $(\epsilon \delta)$ definition soon proved inadequate for applications to physics.
- With this definition a differentiable function must be continuous.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

heory

Why ℝ?

How to define the derivative?

- ► There are other practical reasons why it is necessary to involve infinities and infinitesimals.
- ► Classical $(\epsilon \delta)$ definition soon proved inadequate for applications to physics.
- With this definition a differentiable function must be continuous.
- So, a discontinuous function may not be differentiated.

The Dirac δ

▶ But, in physics, there regularly arose the need to differentiate discontinuous functions.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

'aradoxes of set heory

Why ℝ?

How to define the derivative?

Paradoxes of set heory

Vhy ℝ?

How to define the derivative?

- ▶ But, in physics, there regularly arose the need to differentiate discontinuous functions.
- ► The classical example of a discontinuous function is the Heaviside function:

$$H(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \end{cases}$$

- ▶ But, in physics, there regularly arose the need to differentiate discontinuous functions.
- ► The classical example of a discontinuous function is the Heaviside function:

$$H(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \end{cases}$$

▶ Its derivative of this is the Dirac δ function.

- ▶ But, in physics, there regularly arose the need to differentiate discontinuous functions.
- ► The classical example of a discontinuous function is the Heaviside function:

$$H(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \end{cases}$$

- lts derivative of this is the Dirac δ function.
- ightharpoonup The Dirac δ had a sad childhood:

- ▶ But, in physics, there regularly arose the need to differentiate discontinuous functions.
- ► The classical example of a discontinuous function is the Heaviside function:

$$H(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \end{cases}$$

- Its derivative of this is the Dirac δ function.
- ▶ The Dirac δ had a sad childhood:
- physicists denied that it was physical, and used it as purely a mathematical artifice.

- ▶ But, in physics, there regularly arose the need to differentiate discontinuous functions.
- ▶ The classical example of a discontinuous function is the Heaviside function:

$$H(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \end{cases}$$

- Its derivative of this is the Dirac δ function.
- The Dirac δ had a sad childhood:
- physicists denied that it was physical, and used it as purely a mathematical artifice.
- Mathematicians, on the other hand, considered it as something non-mathematical and non-rigorous—a mere construct used by physicists.

▶ Heaviside, however, used it for electrical engineering.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set heory

Vhy ℝ?

How to define the derivative?

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set :heory

Why ℝ?

How to define the derivative?

- ► Heaviside, however, used it for electrical engineering.
- ► The resulting physical intuition was, however, soon formalised by

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- ► Heaviside, however, used it for electrical engineering.
- ► The resulting physical intuition was, however, soon formalised by
- Sobolev,

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set heory

Why ℝ?

How to define the derivative?

- Heaviside, however, used it for electrical engineering.
- The resulting physical intuition was, however, soon formalised by
- ► Sobolev,
- Schwartz (theory of distributions),

Paradoxes of set theory

Vhy ℝ?

How to define the derivative?

- Heaviside, however, used it for electrical engineering.
- The resulting physical intuition was, however, soon formalised by
- Sobolev,
- ► Schwartz (theory of distributions),
- by Gel'fand and Shilov in the theory of generalised functions, and

Set theory and supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- Heaviside, however, used it for electrical engineering.
- The resulting physical intuition was, however, soon formalised by
- Sobolev,
- Schwartz (theory of distributions),
- by Gel'fand and Shilov in the theory of generalised functions, and
- by Mikusinski in the operational calculus.

Schwartz theory

► In the Schwartz theory, one averages a function and then differentiates it.

Calculus without Limits

C. K. Raju

Introduction

Set theory ar

Paradoxes of set

Why ℝ?

How to define the derivative?

vvny ℝ?

How to define the derivative?

Conclusions

► In the Schwartz theory, one averages a function and then differentiates it.

► Formally, this corresponds to the formula for integration by parts:

$$\int_{-\infty}^{\infty} f'g = -\int_{-\infty}^{\infty} fg'.$$

Why ℝ?

How to define the derivative?

Conclusions

- ► In the Schwartz theory, one averages a function and then differentiates it
- ► Formally, this corresponds to the formula for integration by parts:

 $\int_{-\infty}^{\infty} f'g = -\int_{-\infty}^{\infty} fg'.$

► Here, *f* is the function (possibly discontinuous) which one seeks to differentiate,

- ► In the Schwartz theory, one averages a function and then differentiates it
- ► Formally, this corresponds to the formula for integration by parts:

$$\int_{-\infty}^{\infty} f'g = -\int_{-\infty}^{\infty} fg'.$$

- ► Here, *f* is the function (possibly discontinuous) which one seeks to differentiate,
- ▶ and the derivative f' is now being defined by the right hand side, where the derivative is transferred to

How to define the

Schwartz theory

- ► In the Schwartz theory, one averages a function and then differentiates it.
- ► Formally, this corresponds to the formula for integration by parts:

$$\int_{-\infty}^{\infty} f'g = -\int_{-\infty}^{\infty} fg'.$$

- ► Here, *f* is the function (possibly discontinuous) which one seeks to differentiate,
- ▶ and the derivative f' is now being defined by the right hand side, where the derivative is transferred to
- ▶ the test function g which is assumed to be infinitely differentiable: $g \in C^{\infty}$.

Test functions

supported

▶ The test function *g* is usually assumed to be compactly

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

eory

Vhy ℝ?

How to define the derivative?

Test functions

Calculus without Limits

C. K. Raju

ntroduction

Set theory and supertasks

heory

Nhy ℝ?

How to define the derivative?

Conclusions

► The test function *g* is usually assumed to be compactly supported

or to vanish rapidly at infinity etc.,

Test functions

Calculus without Limits

C. K. Raju

ntroduction

Set theory and supertasks

theory

vny Æ!

How to define the derivative?

Conclusions

► The test function *g* is usually assumed to be compactly supported

- or to vanish rapidly at infinity etc.,
- so that the term fg vanishes at infinity,

Why ℝ?

How to define the derivative?

- ► The test function *g* is usually assumed to be compactly supported
- or to vanish rapidly at infinity etc.,
- so that the term fg vanishes at infinity,
- and the above formula corresponds to the formula for integration by parts.

► The test function *g* is usually assumed to be compactly supported

- or to vanish rapidly at infinity etc.,
- so that the term fg vanishes at infinity,
- and the above formula corresponds to the formula for integration by parts.
- This works equally well for functions of several variables, and we can write

$$\int_{\mathbb{R}^n} f'g = -\int_{\mathbb{R}^n} fg',$$

for $g \in D(\mathbb{R}^n)$ where $D(\mathbb{R}^n)$ is the space of compactly supported and infinitely differentiable functions.

The space of test functions

Formally, $D(\mathbb{R}^n)$ is a topological vector space with the topology of uniform convergence on compacta to all orders.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

:heory

Why ℝ?

How to define the derivative?

The space of test functions

orders.

Calculus without Limits C. K. Raju

lacksquare Formally, $D(\mathbb{R}^n)$ is a topological vector space with the

topology of uniform convergence on compacta to all

Set theory and supertasks

► Technically, this topology is obtained as follows.

Paradoxes of set :heorv

Why ℝ?

How to define the derivative?

Why ℝ?

How to define the derivative?

Conclusions

Formally, $D(\mathbb{R}^n)$ is a topological vector space with the topology of uniform convergence on compacta to all orders.

- ► Technically, this topology is obtained as follows.
 - ► Take a sequence of compact sets K_i such that K_i is contained in the interior of K_{i+1} and $\bigcup_{i=1}^{\infty} K_i = \mathbb{R}^n$.

Paradoxes of set theory

Why \mathbb{R} ?

How to define the derivative?

- Formally, $D(\mathbb{R}^n)$ is a topological vector space with the topology of uniform convergence on compacta to all orders.
- Technically, this topology is obtained as follows.
 - ► Take a sequence of compact sets K_i such that K_i is contained in the interior of K_{i+1} and $\bigcup_{i=1}^{\infty} K_i = \mathbb{R}^n$.
 - ▶ On $C^{\infty}(\mathbb{R}^n)$ define the seminorms $p_N(f) = \max\{|D^{\alpha}f(x)| \ x \in K_N, |\alpha| \le N\}.$

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- Formally, $D(\mathbb{R}^n)$ is a topological vector space with the topology of uniform convergence on compacta to all orders.
- Technically, this topology is obtained as follows.
 - ► Take a sequence of compact sets K_i such that K_i is contained in the interior of K_{i+1} and $\bigcup_{i=1}^{\infty} K_i = \mathbb{R}^n$.
 - ▶ On $C^{\infty}(\mathbb{R}^n)$ define the seminorms $p_N(f) = \max\{|D^{\alpha}f(x)| \ x \in K_N, |\alpha| \le N\}.$
 - Here $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ is a multi-index, and $D^{\alpha} = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \left(\frac{\partial}{\partial x_2}\right)^{\alpha_2} \dots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n}.$

Why ℝ?

How to define the derivative?

Conclusions

The space of test functions

- Formally, $D(\mathbb{R}^n)$ is a topological vector space with the topology of uniform convergence on compacta to all orders.
- Technically, this topology is obtained as follows.
 - ► Take a sequence of compact sets K_i such that K_i is contained in the interior of K_{i+1} and $\bigcup_{i=1}^{\infty} K_i = \mathbb{R}^n$.
 - ▶ On $C^{\infty}(\mathbb{R}^n)$ define the seminorms $p_N(f) = \max\{|D^{\alpha}f(x)| \ x \in K_N, |\alpha| \le N\}.$
 - Here $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ is a multi-index, and $D^{\alpha} = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \left(\frac{\partial}{\partial x_2}\right)^{\alpha_2} \dots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n}.$
 - These seminorms p_N generate a vector topology on $C^{\infty}(\mathbb{R}^n)$, in which the space of compactly supported test functions D is a closed subspace.

Which derivative?

► The Schwartz theory requires that the integral be the Lebesgue integral and not the Riemann integral.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

heory

Nhy ℝ?

How to define the derivative?

Conclusions

990

theory

Why R?

How to define the derivative?

- ► The Schwartz theory requires that the integral be the Lebesgue integral and not the Riemann integral.
- with the Schwartz theory every integrable functions is differentiable.

Set theory and supertasks

theory

Why \mathbb{R} ?

How to define the derivative?

- ► The Schwartz theory requires that the integral be the Lebesgue integral and not the Riemann integral.
- with the Schwartz theory every integrable functions is differentiable.
- $ightharpoonup \epsilon \delta$ definition of the limit and the corresponding derivative was not "natural".

theory

Why \mathbb{R} ?

How to define the derivative?

- ► The Schwartz theory requires that the integral be the Lebesgue integral and not the Riemann integral.
- with the Schwartz theory every integrable functions is differentiable.
- $ightharpoonup \epsilon \delta$ definition of the limit and the corresponding derivative was not "natural".
- That was just a consensus among mathematicians, which has changed, because the earlier definition was not adequate for physics.

Which derivative

contd

Oddly enough, some people continue with both definitions. Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

aradoxes of set heory

Why \mathbb{R} ?

How to define the derivative?

Which derivative

contd

- Oddly enough, some people continue with both definitions.
- though both definitions cannot go together: if a function admits both a classical derivative almost everywhere and a Schwartz derivative, it is not necessary that the two should agree.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

theory

Why ℝ?

How to define the derivative?

theory

Why ℝ?

How to define the derivative?

Conclusions

contd

- Oddly enough, some people continue with both definitions.
- though both definitions cannot go together: if a function admits both a classical derivative almost everywhere and a Schwartz derivative, it is not necessary that the two should agree.
- ▶ E.g., the Heaviside function H(x) is differentiable almost everywhere (i.e., except on a set of Lebesgue measure zero), and the derivative H'=0 almost everywhere.

contd

- Oddly enough, some people continue with both definitions.
- though both definitions cannot go together: if a function admits both a classical derivative almost everywhere and a Schwartz derivative, it is not necessary that the two should agree.
- ▶ E.g., the Heaviside function H(x) is differentiable almost everywhere (i.e., except on a set of Lebesgue measure zero), and the derivative H' = 0 almost everywhere.
- ► However, the Dirac delta is not the zero distribution, since $\int \delta(x) dx = 1$.

contd

- Oddly enough, some people continue with both definitions.
- though both definitions cannot go together: if a function admits both a classical derivative almost everywhere and a Schwartz derivative, it is not necessary that the two should agree.
- \triangleright E.g., the Heaviside function H(x) is differentiable almost everywhere (i.e., except on a set of Lebesgue measure zero), and the derivative H'=0 almost everywhere.
- ▶ However, the Dirac delta is not the zero distribution, since $\int \delta(x) dx = 1$.
- ▶ Thus, for purposes of physics, we need to settle on one of the two as the right definition, and clearly the Schwartz definition is better than the older $\epsilon - \delta$ definition.

Difficulty of point values and products

 However, using the Schwartz theory creates another problem in the formulation of the basic differential equations of physics Calculus without Limits

C. K. Raju

Introduction

et theory an

Paradoxes of set

Why ℝ?

How to define the derivative?

Difficulty of point values and products

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

theory

Nhy ℝ?

How to define the derivative?

Conclusions

 However, using the Schwartz theory creates another problem in the formulation of the basic differential equations of physics

the Schwartz theory reinterprets a function as a functional on a function space.

Difficulty of point values and products

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of se theory

Vhy ℝ?

How to define the derivative?

- However, using the Schwartz theory creates another problem in the formulation of the basic differential equations of physics
- the Schwartz theory reinterprets a function as a functional on a function space.
- ▶ Hence, it is no longer possible to speak of *the* value f(x) of the function f at a point x.

Paradoxes of se theory

Why ℝ?

How to define the derivative?

- However, using the Schwartz theory creates another problem in the formulation of the basic differential equations of physics
- ► the Schwartz theory reinterprets a function as a functional on a function space.
- ▶ Hence, it is no longer possible to speak of *the* value f(x) of the function f at a point x.
- This loss of point values already occurred in the Lebesgue theory of integration.

Paradoxes of se theory

Why ℝ?

How to define the derivative?

- However, using the Schwartz theory creates another problem in the formulation of the basic differential equations of physics
- the Schwartz theory reinterprets a function as a functional on a function space.
- ▶ Hence, it is no longer possible to speak of *the* value f(x) of the function f at a point x.
- ► This loss of point values already occurred in the Lebesgue theory of integration.
- However, it has more serious consequences in the Schwartz theory.

C. K. Raju

Introduction

supertasks

Paradoxes of se theory

Why ℝ?

How to define the derivative?

- However, using the Schwartz theory creates another problem in the formulation of the basic differential equations of physics
- the Schwartz theory reinterprets a function as a functional on a function space.
- ▶ Hence, it is no longer possible to speak of *the* value f(x) of the function f at a point x.
- ► This loss of point values already occurred in the Lebesgue theory of integration.
- However, it has more serious consequences in the Schwartz theory.
- ▶ Pointwise products of functions are no longer defined.

The Schwartz product

► Pointwise product

$$fg(x) = f(x)g(x)$$

defined only in the special case where the functions f and g are smooth (C^{∞}) .

Calculus without Limits

C. K. Raju

Introduction

supertasks

Paradoxes of set heory

Why ℝ?

How to define the derivative?

heory

How to define the

derivative?

Conclusions

► Pointwise product

- fg(x) = f(x)g(x)
 - defined only in the special case where the functions f and g are smooth (C^{∞}).
- Possible to give a natural-looking definition of the pointwise product when only one of the functions is C^{∞} .

LifeOry

How to define the derivative?

Conclusions

Pointwise product

$$fg(x) = f(x)g(x)$$

defined only in the special case where the functions f and g are smooth (C^{∞}) .

- Possible to give a natural-looking definition of the pointwise product when only one of the functions is C^{∞} .
- ▶ Called the Schwartz product. If g is a distribution, and $f \in C^{\infty}$, define

$$\langle fg, h \rangle = \langle g, fh \rangle$$

for all test functions h, where $\langle f, h \rangle \equiv \int fh$.

► Pointwise product

$$fg(x) = f(x)g(x)$$

defined only in the special case where the functions f and g are smooth (C^{∞}) .

- Possible to give a natural-looking definition of the pointwise product when only one of the functions is C^{∞} .
- ▶ Called the Schwartz product. If g is a distribution, and $f \in C^{\infty}$, define

$$\langle fg, h \rangle = \langle g, fh \rangle$$

for all test functions h, where $\langle f, h \rangle \equiv \int fh$.

▶ If $f \in C^{\infty}$ and h is a test function, f.h is again a test function. Hence, the right hand side is well defined.

Schwartz impossibility theorem

distributions which

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

neory

Why ℝ?

How to define the derivative?

onclusions

Schwartz proved that there does not exist a product of

Schwartz impossibility theorem

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

heory

Nhy \mathbb{R} ?

How to define the derivative?

Conclusions

Schwartz proved that there does not exist a product of distributions which

▶ (a) agrees with the Schwartz product (defined above),

Schwartz impossibility theorem

- Calculus without Limits
 - C. K. Raju
- Introduction
- Set theory and supertasks
- heory
- Why ℝ?

How to define the derivative?

- Schwartz proved that there does not exist a product of distributions which
- ▶ (a) agrees with the Schwartz product (defined above),
- ▶ (b) is associative (that is (fg)h = f(gh) for all distributions f, g, h), and

neor y

vny k.

How to define the derivative?

- Schwartz proved that there does not exist a product of distributions which
- ▶ (a) agrees with the Schwartz product (defined above),
- ▶ (b) is associative (that is (fg)h = f(gh) for all distributions f, g, h), and
- (c) satisfies the Leibniz rule (that is (fg)' = fg' + f'g for all distributions f, g).

► Taub¹ asserted, "Fortunately, the product of such distributions [as arise] is quite tractable".

C. K. Raju

Introduction

Set theory and supertasks

aradoxes of se neory

Why ℝ?

How to define the derivative?

Calculus without Limits

¹A. H. Taub, *J. Math. Phys.*,**21** (1980) pp. 1423-31.

How to define the derivative?

 \triangleright Thus, for example, consider the Heaviside function θ .

[►] Taub¹ asserted, "Fortunately, the product of such distributions [as arise] is quite tractable".

 $[\]theta^2 = \theta$,

¹A. H. Taub, *J. Math. Phys.*,**21** (1980) pp. 1423-31.

Why ℝ?

How to define the derivative?

Conclusions

► Taub¹ asserted, "Fortunately, the product of such distributions [as arise] is quite tractable".

▶ Thus, for example, consider the Heaviside function θ .

$$\theta^2 = \theta$$
,

► Apply the "Leibniz" rule (for the derivative of a product of two functions) to conclude that

$$2\theta \cdot \theta' = \theta'$$

¹A. H. Taub, J. Math. Phys., **21** (1980) pp. 1423-31.

- ► Taub¹ asserted, "Fortunately, the product of such distributions [as arise] is quite tractable".
- ▶ Thus, for example, consider the Heaviside function θ .

$$\theta^2 = \theta$$
.

Apply the "Leibniz" rule (for the derivative of a product of two functions) to conclude that

$$2\theta \cdot \theta' = \theta'$$

 \triangleright Since $\theta' = \delta$, this can be rewritten as

$$2\theta \cdot \delta = \delta$$
,

which immediately tells us that

$$\theta \cdot \delta = \frac{1}{2} \cdot \delta.$$

¹A. H. Taub, *J. Math. Phys.*,**21** (1980) pp. 1423–31.

Taub's remark

contd

► This is simple enough except that we also have

$$\theta^3 = \theta$$
,

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

heory

Why ℝ?

How to define the derivative?

$$\theta^3 = \theta$$
,

▶ from which, by the same logic, it would follow that

$$3\theta^2\theta' = \theta'$$
.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

heory

Why \mathbb{R} ?

How to define the derivative?

Why ℝ?

How to define the derivative?

Conclusions

contd

▶ This is simple enough except that we also have

$$\theta^3 = \theta$$
,

▶ from which, by the same logic, it would follow that

$$3\theta^2\theta' = \theta'$$
.

Since

$$\theta^2 = \theta$$
,

this corresponds to

$$\theta \cdot \delta = \frac{1}{3} \cdot \delta.$$

C. K. Raju

Introduction

supertasks

raradoxes of se theory

Why ℝ?

How to define the derivative?

Conclusions

► Comparing the above two leads to the interesting conclusion that $\frac{1}{2} = \frac{1}{3}!$

However, infinities arise in quantum field theory (qft).

Calculus without Limits

C. K. Raju

How to define the derivative?

Calculus without Limits

C. K. Raju

How to define the derivative?

▶ The propagators of qft are fundamental solutions of the

► However, infinities arise in quantum field theory (qft).

Klein-Gordon and Dirac equations.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

theory

Why ℝ?

How to define the derivative?

Conclusions

▶ However, infinities arise in quantum field theory (qft).

► The propagators of qft are fundamental solutions of the Klein-Gordon and Dirac equations.

Products of these propagators arise in the S-matrix expansion.

Calculus without Limits

C. K. Raju

Introduction

et theory and upertasks

theory

Why ℝ?

How to define the derivative?

- However, infinities arise in quantum field theory (qft).
- ► The propagators of qft are fundamental solutions of the Klein-Gordon and Dirac equations.
- Products of these propagators arise in the S-matrix expansion.
- These products are Fourier transformed into convolution integrals, which are divergent.

Why ℝ?

How to define the derivative?

- However, infinities arise in quantum field theory (qft).
- ► The propagators of qft are fundamental solutions of the Klein-Gordon and Dirac equations.
- Products of these propagators arise in the S-matrix expansion.
- ► These products are Fourier transformed into convolution integrals, which are divergent.
- ▶ If we apply this to δ^2 we see that

$$(\delta^2) = \hat{\delta} * \hat{\delta} = 1 * 1 = \int 1 = \infty.$$

Arbitrariness in the definition of the product

Problem today is not that a product cannot be defined.

Calculus without Limits

C. K. Raju

ntroduction

Set theory and supertasks

aradoxes of set leory

Vhy ℝ?

How to define the derivative?

Arbitrariness in the definition of the product

author (1982)

Problem today is not that a product cannot be defined.Many definitions have been given including one by this

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

eory

Why ℝ?

How to define the derivative?

onclusions

200

Arbitrariness in the definition of the product

Calculus without Limits

C. K. Raju

ntroduction

Set theory and supertasks

Paradoxes of set heory

Vhy ℝ?

How to define the derivative?

- Problem today is not that a product cannot be defined.
- ► Many definitions have been given including one by this author (1982)
- ► The problem is to select one definition from among the 40-odd definitions that have been proposed in the literature.

How to define the

derivative?

- Problem today is not that a product cannot be defined.
- Many definitions have been given including one by this author (1982)
- ▶ The problem is to select one definition from among the 40-odd definitions that have been proposed in the literature.
- Quantum field theorists use the Hahn-Banach definition useless for classical physics (shock waves).

Paradoxes of se :heory

vviiy na.

How to define the derivative?

- Problem today is not that a product cannot be defined.
- ► Many definitions have been given including one by this author (1982)
- ► The problem is to select one definition from among the 40-odd definitions that have been proposed in the literature.
- Quantum field theorists use the Hahn-Banach definition useless for classical physics (shock waves).
- Mathematicians use Colombeau's product useless for physics (since it is both associative and satisfies the Leibniz rule).

Paradoxes of se theory

Lance de la color

How to define the derivative?

- Problem today is not that a product cannot be defined.
- ► Many definitions have been given including one by this author (1982)
- ► The problem is to select one definition from among the 40-odd definitions that have been proposed in the literature.
- Quantum field theorists use the Hahn-Banach definition useless for classical physics (shock waves).
- Mathematicians use Colombeau's product useless for physics (since it is both associative and satisfies the Leibniz rule).
- What are the principles on which the choice is to be decided?

Which definition of the product?

One possibility is to use comparison theorems.

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set heory

Why ℝ?

How to define the derivative?

Which definition of the product?

Calculus without Limits

C. K. Raju

Introduction

supertasks

How to define the derivative?

- One possibility is to use comparison theorems.
- ▶ However, Hahn-Banach product used in qft has $\delta^2 = A\delta$. Not comparable with Hormander's product which does not define has δ^2 or with my product which defines δ^2 as an infinite distribution.

Which definition of the product?

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

heory

How to define the

onclusions

One possibility is to use comparison theorems.

- ▶ However, Hahn-Banach product used in qft has $\delta^2 = A\delta$. Not comparable with Hormander's product which does not define has δ^2 or with my product which defines δ^2 as an infinite distribution.
- Another possibility is to by social consensus among authoritative mathematicians.

Set theory and supertasks

theory

Why \mathbb{R} ?

How to define the derivative?

- One possibility is to use comparison theorems.
- ▶ However, Hahn-Banach product used in qft has $\delta^2 = A\delta$. Not comparable with Hormander's product which does not define has δ^2 or with my product which defines δ^2 as an infinite distribution.
- Another possibility is to by social consensus among authoritative mathematicians.
- This is decided by "other considerations". Colombeau product exactly like naive product of non-standard distributions.

How to define the

derivative?

- One possibility is to use comparison theorems.
- However, Hahn-Banach product used in gft has $\delta^2 = A\delta$. Not comparable with Hormander's product which does not define has δ^2 or with my product which defines δ^2 as an infinite distribution.
- Another possibility is to by social consensus among authoritative mathematicians.
- This is decided by "other considerations". Colombeau product exactly like naive product of non-standard distributions.
- Since associate law and Leibniz rule holds, it has a problem as follows.

Shock waves

For smooth fluid flows one can use either (a) conservation of mass, momentum, and energy, or (b) conservation of mass, momentum and entropy. Calculus without Limits

C. K. Raju

Introduction

supertasks

raradoxes of set heory

Why ℝ?

How to define the derivative?

Paradoxes of se theory

U.S. Land

How to define the derivative?

- For smooth fluid flows one can use either (a) conservation of mass, momentum, and energy, or (b) conservation of mass, momentum and entropy.
- ► This is no longer true for non-smooth flows involving shocks.

theory

Why ℝ?

How to define the derivative?

- ► For smooth fluid flows one can use either (a) conservation of mass, momentum, and energy, or (b) conservation of mass, momentum and entropy.
- ► This is no longer true for non-smooth flows involving shocks.
- ▶ (Here a shock is regarded as a surface of discontinuity.)

theory

Vhy ℝ?

How to define the derivative?

- ► For smooth fluid flows one can use either (a) conservation of mass, momentum, and energy, or (b) conservation of mass, momentum and entropy.
- This is no longer true for non-smooth flows involving shocks.
- (Here a shock is regarded as a surface of discontinuity.)
- Historically, Riemann made the mistake of choosing form (b), and arrived at physically incorrect conditions for shocks.

theory

Why ℝ?

How to define the derivative?

- For smooth fluid flows one can use either (a) conservation of mass, momentum, and energy, or (b) conservation of mass, momentum and entropy.
- This is no longer true for non-smooth flows involving shocks.
- (Here a shock is regarded as a surface of discontinuity.)
- Historically, Riemann made the mistake of choosing form (b), and arrived at physically incorrect conditions for shocks.
- ► The correct conditions, using (a) were given by Rankine and Hugoniot.

raradoxes of s theory

Vhy ℝ?

How to define the derivative?

- For smooth fluid flows one can use either (a) conservation of mass, momentum, and energy, or (b) conservation of mass, momentum and entropy.
- This is no longer true for non-smooth flows involving shocks.
- (Here a shock is regarded as a surface of discontinuity.)
- Historically, Riemann made the mistake of choosing form (b), and arrived at physically incorrect conditions for shocks.
- The correct conditions, using (a) were given by Rankine and Hugoniot.
- With the Colombeau theory, it is not possible to discriminate between forms (a) and (b).

Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set heory

Why ℝ?

How to define the derivative?

Conclusions

Conclusions

Calculus with limits is taught on grounds of rigor. However, this purported rigor depends upon the imposition of a variety of arbitrary choices. Calculus without Limits

C. K. Raju

Introduction

Set theory and supertasks

Paradoxes of set heory

Why \mathbb{R} ?

How to define the derivative?

Paradoxes of set theory

Why ℝ?

How to define the derivative?

Conclusions

► Calculus with limits is taught on grounds of rigor. However, this purported rigor depends upon the imposition of a variety of arbitrary choices.

The choice of metamathematics is arbitrary. Calculus with limits requires infinite procedures (spertasks), incorporated in ℝ which is constructed using axiomatic set theory, such as NBG. Supertasks lead to paradoxes of set. Consistency of NBG can only be proved or disproved in metamathematics. The consistency is maintained by an arbitrary choice of metamathematics: refusing to allow in metamathematics the sort of infinite procedures for proof that are admitted in NBG. contd

Introduction

Set theory and supertasks

heory

Why ℝ?

How to define the derivative?

Conclusions

► The choice of the number system underlying the calculus is arbitrary. It is possible to do calculus more intuitively in non-Archimedean fields larger than R.

▶ The definition of the derivative is arbitrary. The classical ϵ - δ definition of the derivative is not adequate for physics, since the derivative of discontinuous functions naturally arises in physics.

intuitively in non-Archimedean fields larger than \mathbb{R} .

Calculus without Limits

C. K. Raju

Introduction

supertasks

heory

Why ℝ?

How to define the derivative?

► The definition of the product of distributions is arbitrary The classical definition of derivative is usually replace by the Schwartz definition which is incomplete

since it does not address the issue of products of

is inadequate and inappropriate for physics

distributions. Colombeau's simplistic definition is today being promoted by mathematical authority, although it

Calculus without Limits

C. K. Raju

Introduction

supertasks

Paradoxes of set heory

Why ℝ?

How to define the derivative?

C. K. Raju

Introduction

supertasks

Paradoxes of set theory

Why ℝ?

How to define the derivative?

- ▶ The definition of the product of distributions is arbitrary The classical definition of derivative is usually replace by the Schwartz definition which is incomplete since it does not address the issue of products of distributions. Colombeau's simplistic definition is today being promoted by mathematical authority, although it is inadequate and inappropriate for physics
- As seen by the fate of the classical definition of derivative, ultimately mathematical definitions have to be related to practical value not mathematical authority.