The int data type

- As stated earlier, the declaration

  ```c
  int a;
  ```

 is an instruction to the compiler to reserve a certain amount of memory to hold the values of the variable a.

- How much memory?

 - Two bytes (usually, but not always, 16 bits)
 - A bit is either 0 or 1
 - So the computer sets aside 16 places, each of which can store either 0 or 1

- So the computer sets aside 16 places each of which looks like the following.

 0 1 0 1 1 0 0 1 0 1 1 1 0 1 0

- This bit pattern corresponds to the binary representation which the computer uses to represent numbers internally.

- The number 40000 is too large to be represented in this way.

- But by what logic did the computer arrive at the figure 20000 + 20000 = -25536?
The binary representation

- Consider, first, the representation of a number with only 4 bits available.

- The bit pattern

\[
\begin{array}{c|c|c|c}
 a_3 & a_2 & a_1 & a_0 \\
\end{array}
\]

- where each \(a_i \) is either 0 or 1 can be interpreted as the number

\[
a_3 2^3 + a_2 2^2 + a_1 2^1 + a_0 2^0
\]

- Thus, \(a_3=0, a_2=1, a_1=1, a_0=1 \), or the bit pattern 0111, corresponds to the number \(0+4+2+1 = 7 \)

Limitations of the binary representation with fixed width

- (1) This method can represent only non-negative integers.
 - In C-language, non-negative integers are represented by the data type unsigned int.

- (2) The maximum integer that can be represented with 4 bits is

\[
2^3 + 2^2 + 2^1 + 2^0 = 15
\]
The maximum integer that can be represented with \(n \) bits is

\[2^{n-1} + 2^{n-2} + 2^{n-3} + \ldots + 2^0 = 2^n - 1 \]

(The sum is obtained by summing the geometric series or geometric progression.)

- Hence, the maximum integer that can be represented with 16 bits is 65535.
- This is the maximum value for the unsigned data type.

Sign-magnitude representation

- How are negative numbers represented?
- One way is to reserve one bit for the sign of the number.
 - This is called the sign bit.
 - Then all numbers beginning with a 1 are regarded as negative.
 - Positive numbers are expressed as before.
- Thus, 1000 0001 is the representation of -1
Difficulties with the sign-magnitude representation

- What is 1000 0000 ?
 - This is “negative zero”!
 - Positive zero is still 0000 0000

- Consider the sum
 0000 0001 (+1)
 + 1000 0001 (-1)
 ————
 1000 0010 (-2)

- Thus, we now have the conclusion: 1+ (-1) = -2

One’s complement

- A second method is to use the one’s complement for negative numbers.

- The one’s complement of a bit pattern is obtained by replacing all 0’s by 1’s and 1’s by 0’s. E.g.

<table>
<thead>
<tr>
<th>Number</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ações</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Then all numbers beginning with a 1 are regarded as negative.
- \(-a\) is represented by 1ações of \(a\) (for positive \(a\)).
Difficulties with one’s complement

- With 8 bits, the one’s complement representation of -38 is obtained as follows.
 - First obtain the binary representation of 38
 \[38 = 0010\ 0110 = (32 + 4 + 2)\]
 - Take the \(1\)’ of this bit pattern to obtain
 \[-38 = 1101\ 1001.\]

- If we add 38 + (-38) we must get

 \[38 + (-38) = 1111\ 1111\]

 - This is the \(1\)’ of 0000 0000, so it should be something like negative zero.

- But we also have the sum

 \[
 \begin{array}{rcl}
 0000\ 0000 & \text{(+0)} \\
 - 0000\ 0001 & \text{(+1)} \\
 \hline
 1111\ 1111
 \end{array}
 \]

 which is to be understood like the sum

 \[
 \begin{array}{rcl}
 1\ 0000\ 0000 \\
 - 0000\ 0001 \\
 \hline
 9999\ 9999
 \end{array}
 \]

 in the decimal representation, since 1 plays the role of both 1 and 9 in the binary representation.
• Thus, we have the difficulty that 0-1 = 38 - 38

Two’s complement

• To correct this problem, we use the two’s complement for negative numbers.

• To get the 2^c of a number
 - Take the 1^c
 - Add 1 to it.

• This makes the above sum come out correct.
Difficulties with the two’s complement

- But we now have a new problem.
- Consider the sum $127 + 1$ (using 8 bits)

\[
\begin{align*}
0111\ 1111 \quad & (127) \\
+ \ 0000\ 0001 \quad & (1) \\

1000\ 0000 \quad & (2^c\ representation\ of\ -128)
\end{align*}
\]

- Thus, $127 + 1 = -128$
Solving the puzzle

- Extending the above logic to 16 bits, we get
 \[32767 + 1 = -32768 \]

- A graphical way to describe this would be that the computer uses a number circle instead of a number line!

Solving the puzzle (contd)

- Thus, the computer adds correctly up to 32767
- Thereafter, it “wraps around”.
- Since, 40000 - 32767 = 7533
 we get
 \[20000 + 20000 = -32768 + 7532 = -25536 \]

- We can easily verify the above considerations, by means of a simple program.
/*Program MaxInt.c*/
/*Function: To show the maximum value of int, and the wrap around property*/

#include <values.h>
#include <stdio.h>
#include <conio.h>

main()
{
 printf ("\n Maximum int = %d", MAXINT);
 printf ("\n Max int + 1 = %d", MAXINT+1);
 getch();
 return 0;
}

• Output:
 Maximum int: 32767
 Max int + 1 = -32768
Checking that 2 bytes is NOT always 16 bits

- In the above program, we #included values.h, since this is the header file where the value MAXINT is defined.
- Why is it necessary to have a special constant for this?
- An int is 2 bytes, but not necessarily 16 bits.
- On a Win 32 platform, an int is 32 bits.
- We can check this out by running the Addint.c program in Visual C++.

- We now get
 \[20000 + 20000 = 40000\]
- But the basic principles remain the same, as we can check by adding enough zeros after 2.
Note: Using the Visual C++ IDE

- This assumes that you have access to Visual C++.
 - This refers to Visual C++ 6.0
 - But the same thing will work with any version of Visual C++.
- Step 1: Start the Visual C++ IDE.
- Step 2: Click File → New
 - Select Win 32 Console Application
 - Select “Create an Empty Project”
- Step 3: Click Project → Add to Project → Files (or New if you want to key in the code directly).

- To compile and run, select Build → Run, and click OK.
- (Or use other choices under the Build option, if there are mistakes in the code.)
The long modifier

- The same sort of effect can be achieved in Turbo C, by using the modifier long.
- This allows 32 bits of storage (in Turbo C) and changes the above values.
- We now have
 \[2147483647 + 1 = -2147483648 \]
- But there is no change in the principle of representing or adding numbers.

- The modifiers long and unsigned can be used together.

```c
unsigned a;
long b;
unsigned long int c;
```
- are all valid declarations.
- The order in which the modifiers are used does not matter.
- There is no difference between

```c
unsigned long c;
- and
long unsigned c;
```
For unsigned long we have the equation

\[4294967295 + 1 = 0 \]

- Obviously,

```
long short int d;
```

- will generate the compiler error

 ‘too many types in declaration’.

- IMPORTANT NOTE: C99 permits the data type

```
long long
```

Fundamental data types II: floats

- Is this the best we can do in computer arithmetic?

- We can improve matters by using the floating point data type.

- The integer data type cannot also be used where fractions are involved.

- For fractions, one uses the float data type, declared as follows:

```
float a, b, c;
```